{"title":"分布式系统上视觉算法的并行实现","authors":"J. You, S. Hungenahally","doi":"10.1109/KES.1998.725994","DOIUrl":null,"url":null,"abstract":"Vision computing involves the execution of a large number of operations on large sets of structured data. The need to implement vision tasks in parallel arises from the speed requirements of real-time environments in various application domains. In this paper we propose that a distributed computer system can be utilised to replace the specialised machine for the parallel implementation of vision tasks. We introduce some techniques used in distributed systems and adopt a divide-and-conquer policy to schedule the complex vision tasks for parallelism. Two traditional vision algorithms for matrix operation and image matching are implemented using PVM (parallel virtual machine). Furthermore, a hierarchical object recognition system is described as an example of parallelism on distributed systems. Finally we conclude that some vision tasks can be realised on a general distributed system to achieve the speedup at a low cost.","PeriodicalId":394492,"journal":{"name":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parallel implementation of vision algorithms on distributed systems\",\"authors\":\"J. You, S. Hungenahally\",\"doi\":\"10.1109/KES.1998.725994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vision computing involves the execution of a large number of operations on large sets of structured data. The need to implement vision tasks in parallel arises from the speed requirements of real-time environments in various application domains. In this paper we propose that a distributed computer system can be utilised to replace the specialised machine for the parallel implementation of vision tasks. We introduce some techniques used in distributed systems and adopt a divide-and-conquer policy to schedule the complex vision tasks for parallelism. Two traditional vision algorithms for matrix operation and image matching are implemented using PVM (parallel virtual machine). Furthermore, a hierarchical object recognition system is described as an example of parallelism on distributed systems. Finally we conclude that some vision tasks can be realised on a general distributed system to achieve the speedup at a low cost.\",\"PeriodicalId\":394492,\"journal\":{\"name\":\"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KES.1998.725994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1998.725994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parallel implementation of vision algorithms on distributed systems
Vision computing involves the execution of a large number of operations on large sets of structured data. The need to implement vision tasks in parallel arises from the speed requirements of real-time environments in various application domains. In this paper we propose that a distributed computer system can be utilised to replace the specialised machine for the parallel implementation of vision tasks. We introduce some techniques used in distributed systems and adopt a divide-and-conquer policy to schedule the complex vision tasks for parallelism. Two traditional vision algorithms for matrix operation and image matching are implemented using PVM (parallel virtual machine). Furthermore, a hierarchical object recognition system is described as an example of parallelism on distributed systems. Finally we conclude that some vision tasks can be realised on a general distributed system to achieve the speedup at a low cost.