负荷预测的混合建模技术

P. Campbell
{"title":"负荷预测的混合建模技术","authors":"P. Campbell","doi":"10.1109/EPC.2007.4520371","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative study of soft computing models namely; multilayer perceptron networks, partial recurrent neural networks, radial basis function network, fuzzy inference system and hybrid fuzzy neural network for the hourly electricity demand forecast in Northern Ireland. The soft computing models were trained and tested using the actual hourly load data. A comparison of the proposed techniques is presented for predicting a 48 hour horizon demand for electricity. Simulation results indicate that hybrid fuzzy neural network and radial basis function networks are the best candidates for the analysis and forecasting of electricity demand.","PeriodicalId":196861,"journal":{"name":"2007 IEEE Canada Electrical Power Conference","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Hybrid Modelling Technique for Load Forecasting\",\"authors\":\"P. Campbell\",\"doi\":\"10.1109/EPC.2007.4520371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comparative study of soft computing models namely; multilayer perceptron networks, partial recurrent neural networks, radial basis function network, fuzzy inference system and hybrid fuzzy neural network for the hourly electricity demand forecast in Northern Ireland. The soft computing models were trained and tested using the actual hourly load data. A comparison of the proposed techniques is presented for predicting a 48 hour horizon demand for electricity. Simulation results indicate that hybrid fuzzy neural network and radial basis function networks are the best candidates for the analysis and forecasting of electricity demand.\",\"PeriodicalId\":196861,\"journal\":{\"name\":\"2007 IEEE Canada Electrical Power Conference\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Canada Electrical Power Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPC.2007.4520371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Canada Electrical Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPC.2007.4520371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文对软计算模型进行了比较研究,即;多层感知器网络、部分递归神经网络、径向基函数网络、模糊推理系统和混合模糊神经网络在北爱尔兰的小时电力需求预测。使用实际的每小时负荷数据对软计算模型进行了训练和测试。提出了一种预测48小时地平线电力需求的比较方法。仿真结果表明,混合模糊神经网络和径向基函数网络是电力需求分析和预测的最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Modelling Technique for Load Forecasting
This paper presents a comparative study of soft computing models namely; multilayer perceptron networks, partial recurrent neural networks, radial basis function network, fuzzy inference system and hybrid fuzzy neural network for the hourly electricity demand forecast in Northern Ireland. The soft computing models were trained and tested using the actual hourly load data. A comparison of the proposed techniques is presented for predicting a 48 hour horizon demand for electricity. Simulation results indicate that hybrid fuzzy neural network and radial basis function networks are the best candidates for the analysis and forecasting of electricity demand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信