{"title":"基于条件生成对抗网络和色彩亮度转移方法的空间高分辨率可见光和近红外分离","authors":"Younghyeon Park, B. Jeon","doi":"10.1109/ICCCAS.2018.8769279","DOIUrl":null,"url":null,"abstract":"Since near-infrared (NIR) image information is useful in improving visible range (VIS) image, acquisition of both images in a more simple and economic way has drawn much research interest. Deep-learning based approach is found to be effective in the separation from a mixed NIR and VIS image captured by a conventional camera, however, it has a problem of high computational complexity, especially for an image of high spatial resolution. In this paper, we propose a method for separating high-resolution VIS and NIR images using a deep-learning based on a conditional generative adversarial network. Experimental results show that the proposed method can reduce the computational complexity by 97 times as compared with the previous work without loss in image quality.","PeriodicalId":166878,"journal":{"name":"2018 10th International Conference on Communications, Circuits and Systems (ICCCAS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatially High Resolution Visible and Near-Infrared Separation using Conditional Generative Adversarial Network and Color Brightness Transfer Method\",\"authors\":\"Younghyeon Park, B. Jeon\",\"doi\":\"10.1109/ICCCAS.2018.8769279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since near-infrared (NIR) image information is useful in improving visible range (VIS) image, acquisition of both images in a more simple and economic way has drawn much research interest. Deep-learning based approach is found to be effective in the separation from a mixed NIR and VIS image captured by a conventional camera, however, it has a problem of high computational complexity, especially for an image of high spatial resolution. In this paper, we propose a method for separating high-resolution VIS and NIR images using a deep-learning based on a conditional generative adversarial network. Experimental results show that the proposed method can reduce the computational complexity by 97 times as compared with the previous work without loss in image quality.\",\"PeriodicalId\":166878,\"journal\":{\"name\":\"2018 10th International Conference on Communications, Circuits and Systems (ICCCAS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 10th International Conference on Communications, Circuits and Systems (ICCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCAS.2018.8769279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Communications, Circuits and Systems (ICCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCAS.2018.8769279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spatially High Resolution Visible and Near-Infrared Separation using Conditional Generative Adversarial Network and Color Brightness Transfer Method
Since near-infrared (NIR) image information is useful in improving visible range (VIS) image, acquisition of both images in a more simple and economic way has drawn much research interest. Deep-learning based approach is found to be effective in the separation from a mixed NIR and VIS image captured by a conventional camera, however, it has a problem of high computational complexity, especially for an image of high spatial resolution. In this paper, we propose a method for separating high-resolution VIS and NIR images using a deep-learning based on a conditional generative adversarial network. Experimental results show that the proposed method can reduce the computational complexity by 97 times as compared with the previous work without loss in image quality.