{"title":"受人类神经调节系统启发的机器人功能部件集成与管理模型","authors":"J. Berná-Martínez, J. Pérez","doi":"10.1109/ETFA.2010.5641077","DOIUrl":null,"url":null,"abstract":"This paper presents a model of integration and management for robotic functional components that make up the robotic control system. To that end, we use the human neuroregulatory system as the basis for the decomposition of tasks and actions behavior, and we rely on the SOA paradigm for the design of a distributed architecture that allows the viability of the system. This proposal will ensure a total decoupling between modules by promoting the reusability and features such as pattern-based design, while the system is fully distributed ensuring high flexibility, scalability, robustness and fault tolerance.","PeriodicalId":201440,"journal":{"name":"2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Model of integration and management for robotic functional components inspired by the human neuroregulatory system\",\"authors\":\"J. Berná-Martínez, J. Pérez\",\"doi\":\"10.1109/ETFA.2010.5641077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a model of integration and management for robotic functional components that make up the robotic control system. To that end, we use the human neuroregulatory system as the basis for the decomposition of tasks and actions behavior, and we rely on the SOA paradigm for the design of a distributed architecture that allows the viability of the system. This proposal will ensure a total decoupling between modules by promoting the reusability and features such as pattern-based design, while the system is fully distributed ensuring high flexibility, scalability, robustness and fault tolerance.\",\"PeriodicalId\":201440,\"journal\":{\"name\":\"2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2010.5641077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2010.5641077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model of integration and management for robotic functional components inspired by the human neuroregulatory system
This paper presents a model of integration and management for robotic functional components that make up the robotic control system. To that end, we use the human neuroregulatory system as the basis for the decomposition of tasks and actions behavior, and we rely on the SOA paradigm for the design of a distributed architecture that allows the viability of the system. This proposal will ensure a total decoupling between modules by promoting the reusability and features such as pattern-based design, while the system is fully distributed ensuring high flexibility, scalability, robustness and fault tolerance.