学会自我恢复

Thomas Reidemeister, Miao Jiang, Paul A. S. Ward
{"title":"学会自我恢复","authors":"Thomas Reidemeister, Miao Jiang, Paul A. S. Ward","doi":"10.1109/INM.2011.5990506","DOIUrl":null,"url":null,"abstract":"Business success is contingent on dependable, yet affordable, software systems; this implies a need for self-recovering cloud-based component software systems. In prior work we demonstrated a discrete controller that allows scheduling of recovery actions based on uncertain fault knowledge. That approach required detailed analysis of historic failure data. In this paper we examine adaptive learning through active exploration and demonstrate the impact of drifting or invalid knowledge about recovery actions.","PeriodicalId":433520,"journal":{"name":"12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning to self-recover\",\"authors\":\"Thomas Reidemeister, Miao Jiang, Paul A. S. Ward\",\"doi\":\"10.1109/INM.2011.5990506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Business success is contingent on dependable, yet affordable, software systems; this implies a need for self-recovering cloud-based component software systems. In prior work we demonstrated a discrete controller that allows scheduling of recovery actions based on uncertain fault knowledge. That approach required detailed analysis of historic failure data. In this paper we examine adaptive learning through active exploration and demonstrate the impact of drifting or invalid knowledge about recovery actions.\",\"PeriodicalId\":433520,\"journal\":{\"name\":\"12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INM.2011.5990506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INM.2011.5990506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

商业上的成功取决于可靠而又负担得起的软件系统;这意味着需要基于云的自恢复组件软件系统。在之前的工作中,我们展示了一个离散控制器,它允许基于不确定故障知识调度恢复动作。这种方法需要对历史故障数据进行详细分析。在本文中,我们通过主动探索来研究自适应学习,并论证了漂移或无效知识对恢复行动的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to self-recover
Business success is contingent on dependable, yet affordable, software systems; this implies a need for self-recovering cloud-based component software systems. In prior work we demonstrated a discrete controller that allows scheduling of recovery actions based on uncertain fault knowledge. That approach required detailed analysis of historic failure data. In this paper we examine adaptive learning through active exploration and demonstrate the impact of drifting or invalid knowledge about recovery actions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信