样本分位数的二元FCLT和增广GARCH(p, q)过程的色散度量

M. Bräutigam, M. Kratz
{"title":"样本分位数的二元FCLT和增广GARCH(p, q)过程的色散度量","authors":"M. Bräutigam, M. Kratz","doi":"10.2139/ssrn.3416442","DOIUrl":null,"url":null,"abstract":"In this note, we build upon the asymptotic theory for GARCH processes, considering the general class of augmented GARCH(p, q) processes. Our contribution is to complement the well-known univariate asymptotics by providing a bivariate functional central limit theorem between the sample quantile and the r-th absolute centred sample moment. This extends existing results in the case of identically and independently distributed random variables. We show that the conditions for the convergence of the estimators in the univariate case suffice even for the joint bivariate asymptotics. We illustrate the general results with various specific examples from the class of augmented GARCH(p, q) processes and show explicitly under which conditions on the moments and parameters of the process the joint asymptotics hold.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bivariate FCLT for the Sample Quantile and Measures of Dispersion for Augmented GARCH( p, q) processes\",\"authors\":\"M. Bräutigam, M. Kratz\",\"doi\":\"10.2139/ssrn.3416442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we build upon the asymptotic theory for GARCH processes, considering the general class of augmented GARCH(p, q) processes. Our contribution is to complement the well-known univariate asymptotics by providing a bivariate functional central limit theorem between the sample quantile and the r-th absolute centred sample moment. This extends existing results in the case of identically and independently distributed random variables. We show that the conditions for the convergence of the estimators in the univariate case suffice even for the joint bivariate asymptotics. We illustrate the general results with various specific examples from the class of augmented GARCH(p, q) processes and show explicitly under which conditions on the moments and parameters of the process the joint asymptotics hold.\",\"PeriodicalId\":260073,\"journal\":{\"name\":\"Mathematics eJournal\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3416442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3416442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们建立了GARCH过程的渐近理论,考虑了一类增广GARCH(p, q)过程。我们的贡献是通过提供样本分位数和第r个绝对中心样本矩之间的二元泛函中心极限定理来补充众所周知的单变量渐近性。这扩展了在相同和独立分布的随机变量情况下的现有结果。我们证明了在单变量情况下估计量收敛的条件甚至满足联合双变量渐近的条件。我们用增广GARCH(p, q)过程的各种具体例子说明了一般结果,并明确地说明了过程的矩和参数的联合渐近在哪些条件下成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bivariate FCLT for the Sample Quantile and Measures of Dispersion for Augmented GARCH( p, q) processes
In this note, we build upon the asymptotic theory for GARCH processes, considering the general class of augmented GARCH(p, q) processes. Our contribution is to complement the well-known univariate asymptotics by providing a bivariate functional central limit theorem between the sample quantile and the r-th absolute centred sample moment. This extends existing results in the case of identically and independently distributed random variables. We show that the conditions for the convergence of the estimators in the univariate case suffice even for the joint bivariate asymptotics. We illustrate the general results with various specific examples from the class of augmented GARCH(p, q) processes and show explicitly under which conditions on the moments and parameters of the process the joint asymptotics hold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信