{"title":"基于智能学习方法的嵌入式M2M实时电源管理","authors":"Anand Paul","doi":"10.1145/2632158","DOIUrl":null,"url":null,"abstract":"In this work, an embedded system working model is designed with one server that receives requests by a requester by a service queue that is monitored by a Power Manager (PM). A novel approach is presented based on reinforcement learning to predict the best policy amidst existing DPM policies and deterministic markovian nonstationary policies (DMNSP). We apply reinforcement learning, namely a computational approach to understanding and automating goal-directed learning that supports different devices according to their DPM. Reinforcement learning uses a formal framework defining the interaction between agent and environment in terms of states, response action, and reward points. The capability of this approach is demonstrated by an event-driven simulator designed using Java with a power-manageable machine-to-machine device. Our experiment result shows that the proposed dynamic power management with timeout policy gives average power saving from 4% to 21% and the novel dynamic power management with DMNSP gives average power saving from 10% to 28% more than already proposed DPM policies.","PeriodicalId":183677,"journal":{"name":"ACM Trans. Embed. Comput. Syst.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Real-Time Power Management for Embedded M2M Using Intelligent Learning Methods\",\"authors\":\"Anand Paul\",\"doi\":\"10.1145/2632158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, an embedded system working model is designed with one server that receives requests by a requester by a service queue that is monitored by a Power Manager (PM). A novel approach is presented based on reinforcement learning to predict the best policy amidst existing DPM policies and deterministic markovian nonstationary policies (DMNSP). We apply reinforcement learning, namely a computational approach to understanding and automating goal-directed learning that supports different devices according to their DPM. Reinforcement learning uses a formal framework defining the interaction between agent and environment in terms of states, response action, and reward points. The capability of this approach is demonstrated by an event-driven simulator designed using Java with a power-manageable machine-to-machine device. Our experiment result shows that the proposed dynamic power management with timeout policy gives average power saving from 4% to 21% and the novel dynamic power management with DMNSP gives average power saving from 10% to 28% more than already proposed DPM policies.\",\"PeriodicalId\":183677,\"journal\":{\"name\":\"ACM Trans. Embed. Comput. Syst.\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Embed. Comput. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2632158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Embed. Comput. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2632158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-Time Power Management for Embedded M2M Using Intelligent Learning Methods
In this work, an embedded system working model is designed with one server that receives requests by a requester by a service queue that is monitored by a Power Manager (PM). A novel approach is presented based on reinforcement learning to predict the best policy amidst existing DPM policies and deterministic markovian nonstationary policies (DMNSP). We apply reinforcement learning, namely a computational approach to understanding and automating goal-directed learning that supports different devices according to their DPM. Reinforcement learning uses a formal framework defining the interaction between agent and environment in terms of states, response action, and reward points. The capability of this approach is demonstrated by an event-driven simulator designed using Java with a power-manageable machine-to-machine device. Our experiment result shows that the proposed dynamic power management with timeout policy gives average power saving from 4% to 21% and the novel dynamic power management with DMNSP gives average power saving from 10% to 28% more than already proposed DPM policies.