基于智能学习方法的嵌入式M2M实时电源管理

Anand Paul
{"title":"基于智能学习方法的嵌入式M2M实时电源管理","authors":"Anand Paul","doi":"10.1145/2632158","DOIUrl":null,"url":null,"abstract":"In this work, an embedded system working model is designed with one server that receives requests by a requester by a service queue that is monitored by a Power Manager (PM). A novel approach is presented based on reinforcement learning to predict the best policy amidst existing DPM policies and deterministic markovian nonstationary policies (DMNSP). We apply reinforcement learning, namely a computational approach to understanding and automating goal-directed learning that supports different devices according to their DPM. Reinforcement learning uses a formal framework defining the interaction between agent and environment in terms of states, response action, and reward points. The capability of this approach is demonstrated by an event-driven simulator designed using Java with a power-manageable machine-to-machine device. Our experiment result shows that the proposed dynamic power management with timeout policy gives average power saving from 4% to 21% and the novel dynamic power management with DMNSP gives average power saving from 10% to 28% more than already proposed DPM policies.","PeriodicalId":183677,"journal":{"name":"ACM Trans. Embed. Comput. Syst.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Real-Time Power Management for Embedded M2M Using Intelligent Learning Methods\",\"authors\":\"Anand Paul\",\"doi\":\"10.1145/2632158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, an embedded system working model is designed with one server that receives requests by a requester by a service queue that is monitored by a Power Manager (PM). A novel approach is presented based on reinforcement learning to predict the best policy amidst existing DPM policies and deterministic markovian nonstationary policies (DMNSP). We apply reinforcement learning, namely a computational approach to understanding and automating goal-directed learning that supports different devices according to their DPM. Reinforcement learning uses a formal framework defining the interaction between agent and environment in terms of states, response action, and reward points. The capability of this approach is demonstrated by an event-driven simulator designed using Java with a power-manageable machine-to-machine device. Our experiment result shows that the proposed dynamic power management with timeout policy gives average power saving from 4% to 21% and the novel dynamic power management with DMNSP gives average power saving from 10% to 28% more than already proposed DPM policies.\",\"PeriodicalId\":183677,\"journal\":{\"name\":\"ACM Trans. Embed. Comput. Syst.\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Embed. Comput. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2632158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Embed. Comput. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2632158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

在这项工作中,设计了一个嵌入式系统工作模型,其中一个服务器通过电源管理器(PM)监控的服务队列接收请求者的请求。提出了一种基于强化学习的方法,在现有DPM策略和确定性马尔可夫非平稳策略(DMNSP)中预测最佳策略。我们应用强化学习,即一种计算方法来理解和自动化目标导向学习,根据DPM支持不同的设备。强化学习使用一个正式的框架,根据状态、响应行为和奖励点来定义代理和环境之间的交互。这种方法的功能通过一个使用Java设计的事件驱动模拟器来演示,该模拟器带有一个电源可管理的机器对机器设备。实验结果表明,与已有的DPM策略相比,采用超时策略的动态电源管理平均节电4% ~ 21%,采用DMNSP的动态电源管理平均节电10% ~ 28%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Power Management for Embedded M2M Using Intelligent Learning Methods
In this work, an embedded system working model is designed with one server that receives requests by a requester by a service queue that is monitored by a Power Manager (PM). A novel approach is presented based on reinforcement learning to predict the best policy amidst existing DPM policies and deterministic markovian nonstationary policies (DMNSP). We apply reinforcement learning, namely a computational approach to understanding and automating goal-directed learning that supports different devices according to their DPM. Reinforcement learning uses a formal framework defining the interaction between agent and environment in terms of states, response action, and reward points. The capability of this approach is demonstrated by an event-driven simulator designed using Java with a power-manageable machine-to-machine device. Our experiment result shows that the proposed dynamic power management with timeout policy gives average power saving from 4% to 21% and the novel dynamic power management with DMNSP gives average power saving from 10% to 28% more than already proposed DPM policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信