基于cuda的分层多块粒子群优化算法

T. Lan, Maoyun Guo, J. Qu, Yi Chai, Zhenglei Liu, Xunjie Zhang
{"title":"基于cuda的分层多块粒子群优化算法","authors":"T. Lan, Maoyun Guo, J. Qu, Yi Chai, Zhenglei Liu, Xunjie Zhang","doi":"10.1109/CCDC.2015.7162652","DOIUrl":null,"url":null,"abstract":"In order to improve the traditional Particle Swarm Optimization (PSO) algorithm's speed and optimization ability, this paper proposes a new algorithm based on CUDA (Compute Unified Device Architecture) technology which employs the two level PSO, the bottom level PSO and the top level PSO. And in the bottom level, the particles are divided into N groups, each of which will run the PSO and send the best particle to the top level individually to achieve better convergency. And the algorithm applys the CUDA threads to run the above PSO at different levels parallel to accelerate the algorithm speed. The simulation results show that the performance of the algorithm the paper provided is better than that of the traditional PSO.","PeriodicalId":273292,"journal":{"name":"The 27th Chinese Control and Decision Conference (2015 CCDC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CUDA-based hierarchical multi-block particle swarm optimization algorithm\",\"authors\":\"T. Lan, Maoyun Guo, J. Qu, Yi Chai, Zhenglei Liu, Xunjie Zhang\",\"doi\":\"10.1109/CCDC.2015.7162652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the traditional Particle Swarm Optimization (PSO) algorithm's speed and optimization ability, this paper proposes a new algorithm based on CUDA (Compute Unified Device Architecture) technology which employs the two level PSO, the bottom level PSO and the top level PSO. And in the bottom level, the particles are divided into N groups, each of which will run the PSO and send the best particle to the top level individually to achieve better convergency. And the algorithm applys the CUDA threads to run the above PSO at different levels parallel to accelerate the algorithm speed. The simulation results show that the performance of the algorithm the paper provided is better than that of the traditional PSO.\",\"PeriodicalId\":273292,\"journal\":{\"name\":\"The 27th Chinese Control and Decision Conference (2015 CCDC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 27th Chinese Control and Decision Conference (2015 CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2015.7162652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 27th Chinese Control and Decision Conference (2015 CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2015.7162652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了提高传统粒子群优化算法的速度和优化能力,本文提出了一种基于CUDA(计算统一设备架构)技术的粒子群优化算法,该算法采用底层粒子群优化算法和顶层粒子群优化算法两层结构。在底层,粒子被分成N组,每组运行粒子群,并将最佳粒子单独发送到顶层,以达到更好的收敛性。该算法利用CUDA线程在不同级别并行运行上述PSO,以加快算法速度。仿真结果表明,本文算法的性能优于传统粒子群算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CUDA-based hierarchical multi-block particle swarm optimization algorithm
In order to improve the traditional Particle Swarm Optimization (PSO) algorithm's speed and optimization ability, this paper proposes a new algorithm based on CUDA (Compute Unified Device Architecture) technology which employs the two level PSO, the bottom level PSO and the top level PSO. And in the bottom level, the particles are divided into N groups, each of which will run the PSO and send the best particle to the top level individually to achieve better convergency. And the algorithm applys the CUDA threads to run the above PSO at different levels parallel to accelerate the algorithm speed. The simulation results show that the performance of the algorithm the paper provided is better than that of the traditional PSO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信