{"title":"非连续系数热方程解的正则性","authors":"Selma Kouicem, W. Chikouche","doi":"10.17516/1997-1397-2020-13-466-479","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the transmission problem for the heat equation on a bounded plane sector in Lᵖ-Sobolev spaces. By Applying the theory of the sums of operators of Da Prato-Grisvard and Dore-Venni, we prove that the solution can be splited into a regular part in Lp-Sobolev space and an explicit singular part","PeriodicalId":422202,"journal":{"name":"Journal of Siberian Federal University. Mathematics and Physics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lᵖ Regularity of the Solution of the Heat Equation with Discontinuous Coefficients\",\"authors\":\"Selma Kouicem, W. Chikouche\",\"doi\":\"10.17516/1997-1397-2020-13-466-479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the transmission problem for the heat equation on a bounded plane sector in Lᵖ-Sobolev spaces. By Applying the theory of the sums of operators of Da Prato-Grisvard and Dore-Venni, we prove that the solution can be splited into a regular part in Lp-Sobolev space and an explicit singular part\",\"PeriodicalId\":422202,\"journal\":{\"name\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1997-1397-2020-13-466-479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2020-13-466-479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了L - L -Sobolev空间中有界平面扇形上热方程的传输问题。利用Da Prato-Grisvard和dre - venni的算子和理论,证明了解在Lp-Sobolev空间中可以分解为正则部分和显式奇异部分
Lᵖ Regularity of the Solution of the Heat Equation with Discontinuous Coefficients
In this paper, we consider the transmission problem for the heat equation on a bounded plane sector in Lᵖ-Sobolev spaces. By Applying the theory of the sums of operators of Da Prato-Grisvard and Dore-Venni, we prove that the solution can be splited into a regular part in Lp-Sobolev space and an explicit singular part