结合Word2Vec和多层感知机的滥用内容检测方法

S. Ghosal, Amit Jain, D. Tayal
{"title":"结合Word2Vec和多层感知机的滥用内容检测方法","authors":"S. Ghosal, Amit Jain, D. Tayal","doi":"10.1109/IBSSC56953.2022.10037274","DOIUrl":null,"url":null,"abstract":"With the rapid growth of social media text, millions of negative comments are flowing on social webs and social networking sites. Abusive content is harmful to people and societies that can provoke various criminal offenses like hate crimes. Hate speech is also a form of abusive content. An automatic and improved detection system for hate speech can help to reduce this problem. Implicit abusive content requires contextual semantic and syntactical analysis. We propose a novel abusive text detection model with the word2vec model and compositional vector model to analyze text more semantically and syntactically. The proposed model considers the English language dataset for abusive text. The abusive content detection model exhibits achievable performance compare to various deep learning and machine learning classifiers. Among all models, Multilayer Perceptron classifier achieves 86% accuracy compared to other models.","PeriodicalId":426897,"journal":{"name":"2022 IEEE Bombay Section Signature Conference (IBSSC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approach to detect abusive content incorporating Word2Vec and Multilayer Perceptron\",\"authors\":\"S. Ghosal, Amit Jain, D. Tayal\",\"doi\":\"10.1109/IBSSC56953.2022.10037274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth of social media text, millions of negative comments are flowing on social webs and social networking sites. Abusive content is harmful to people and societies that can provoke various criminal offenses like hate crimes. Hate speech is also a form of abusive content. An automatic and improved detection system for hate speech can help to reduce this problem. Implicit abusive content requires contextual semantic and syntactical analysis. We propose a novel abusive text detection model with the word2vec model and compositional vector model to analyze text more semantically and syntactically. The proposed model considers the English language dataset for abusive text. The abusive content detection model exhibits achievable performance compare to various deep learning and machine learning classifiers. Among all models, Multilayer Perceptron classifier achieves 86% accuracy compared to other models.\",\"PeriodicalId\":426897,\"journal\":{\"name\":\"2022 IEEE Bombay Section Signature Conference (IBSSC)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Bombay Section Signature Conference (IBSSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IBSSC56953.2022.10037274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC56953.2022.10037274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着社交媒体文本的快速增长,数以百万计的负面评论在社交网站和社交网站上流动。滥用内容对人们和社会有害,可能引发仇恨犯罪等各种刑事犯罪。仇恨言论也是辱骂性内容的一种形式。一个自动改进的仇恨言论检测系统可以帮助减少这个问题。隐性滥用内容需要上下文语义和句法分析。我们提出了一种新的滥用文本检测模型,结合word2vec模型和组合向量模型对文本进行语义和句法分析。提出的模型考虑了英语语言数据集的滥用文本。与各种深度学习和机器学习分类器相比,滥用内容检测模型显示出可实现的性能。在所有模型中,多层感知器分类器与其他模型相比准确率达到86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approach to detect abusive content incorporating Word2Vec and Multilayer Perceptron
With the rapid growth of social media text, millions of negative comments are flowing on social webs and social networking sites. Abusive content is harmful to people and societies that can provoke various criminal offenses like hate crimes. Hate speech is also a form of abusive content. An automatic and improved detection system for hate speech can help to reduce this problem. Implicit abusive content requires contextual semantic and syntactical analysis. We propose a novel abusive text detection model with the word2vec model and compositional vector model to analyze text more semantically and syntactically. The proposed model considers the English language dataset for abusive text. The abusive content detection model exhibits achievable performance compare to various deep learning and machine learning classifiers. Among all models, Multilayer Perceptron classifier achieves 86% accuracy compared to other models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信