一种感知模糊神经模型

J. T. Rickard, J. Aisbett
{"title":"一种感知模糊神经模型","authors":"J. T. Rickard, J. Aisbett","doi":"10.1109/MCDM.2014.7007188","DOIUrl":null,"url":null,"abstract":"We introduce a fuzzy neural model which is more intuitive and general than the traditional weighted sum/squashing function neuron model. Positively and negatively causal inputs are separately aggregated using operators that are selected to suit the particular application. The aggregations are then combined using a simple arithmetic transformation. We outline the computational process when inputs and importance weights are vocabulary words modelled as interval type-2 fuzzy sets, and illustrate on predictions of gold price changes.","PeriodicalId":335170,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A perceptual fuzzy neural model\",\"authors\":\"J. T. Rickard, J. Aisbett\",\"doi\":\"10.1109/MCDM.2014.7007188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a fuzzy neural model which is more intuitive and general than the traditional weighted sum/squashing function neuron model. Positively and negatively causal inputs are separately aggregated using operators that are selected to suit the particular application. The aggregations are then combined using a simple arithmetic transformation. We outline the computational process when inputs and importance weights are vocabulary words modelled as interval type-2 fuzzy sets, and illustrate on predictions of gold price changes.\",\"PeriodicalId\":335170,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCDM.2014.7007188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCDM.2014.7007188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一种比传统的加权和/压扁函数神经元模型更直观和通用的模糊神经模型。正因果输入和负因果输入分别使用适合特定应用的操作符进行聚合。然后,使用简单的算术转换将聚合组合起来。我们概述了当输入和重要权重是建模为区间2型模糊集的词汇时的计算过程,并举例说明黄金价格变化的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A perceptual fuzzy neural model
We introduce a fuzzy neural model which is more intuitive and general than the traditional weighted sum/squashing function neuron model. Positively and negatively causal inputs are separately aggregated using operators that are selected to suit the particular application. The aggregations are then combined using a simple arithmetic transformation. We outline the computational process when inputs and importance weights are vocabulary words modelled as interval type-2 fuzzy sets, and illustrate on predictions of gold price changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信