群汞合金的一般子群

B. Fine, A. Myasnikov, G. Rosenberger
{"title":"群汞合金的一般子群","authors":"B. Fine, A. Myasnikov, G. Rosenberger","doi":"10.1515/GCC.2009.51","DOIUrl":null,"url":null,"abstract":"Abstract For many groups the structure of finitely generated subgroups is generically simple. That is with asymptotic density equal to one a randomly chosen finitely generated subgroup has a particular well-known and easily analyzed structure. For example a result of D. B. A. Epstein says that a finitely generated subgroup of GL(n, ℝ) is generically a free group. We say that a group G has the generic free group property if any finitely generated subgroup is generically a free group. Further G has the strong generic free group property if given randomly chosen elements g 1, . . . , gn in G then generically they are a free basis for the free subgroup they generate. In this paper we show that for any arbitrary free product of finitely generated infinite groups satisfies the strong generic free group property. There are also extensions to more general amalgams - free products with amalgamation and HNN groups. These results have implications in cryptography. In particular several cryptosystems use random choices of subgroups as hard cryptographic problems. In groups with the generic free group property any such cryptosystem may be attackable by a length based attack.","PeriodicalId":119576,"journal":{"name":"Groups Complex. Cryptol.","volume":"245 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Generic Subgroups of Group Amalgams\",\"authors\":\"B. Fine, A. Myasnikov, G. Rosenberger\",\"doi\":\"10.1515/GCC.2009.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For many groups the structure of finitely generated subgroups is generically simple. That is with asymptotic density equal to one a randomly chosen finitely generated subgroup has a particular well-known and easily analyzed structure. For example a result of D. B. A. Epstein says that a finitely generated subgroup of GL(n, ℝ) is generically a free group. We say that a group G has the generic free group property if any finitely generated subgroup is generically a free group. Further G has the strong generic free group property if given randomly chosen elements g 1, . . . , gn in G then generically they are a free basis for the free subgroup they generate. In this paper we show that for any arbitrary free product of finitely generated infinite groups satisfies the strong generic free group property. There are also extensions to more general amalgams - free products with amalgamation and HNN groups. These results have implications in cryptography. In particular several cryptosystems use random choices of subgroups as hard cryptographic problems. In groups with the generic free group property any such cryptosystem may be attackable by a length based attack.\",\"PeriodicalId\":119576,\"journal\":{\"name\":\"Groups Complex. Cryptol.\",\"volume\":\"245 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complex. Cryptol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/GCC.2009.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complex. Cryptol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/GCC.2009.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

摘要对于许多群,有限生成子群的结构一般是简单的。也就是说,当密度渐近等于1时,随机选择的有限生成的子群具有特定的众所周知的易于分析的结构。例如,D. B. a . Epstein的一个结果说,GL(n, l)的有限生成子群一般是一个自由群。如果任何有限生成的子群是一般自由群,则群G具有一般自由群的性质。若给定随机选取的元素g1,…,则G具有强一般自由群性质。, gn在G中,那么一般来说它们是它们生成的自由子群的自由基。本文证明了有限生成无限群的任意自由积满足强一般自由群的性质。也有扩展到更一般的无汞合金产品与合并和HNN组。这些结果对密码学有影响。特别是一些密码系统使用子群的随机选择作为硬密码问题。在具有一般自由群属性的群中,任何这样的密码系统都可以被基于长度的攻击攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generic Subgroups of Group Amalgams
Abstract For many groups the structure of finitely generated subgroups is generically simple. That is with asymptotic density equal to one a randomly chosen finitely generated subgroup has a particular well-known and easily analyzed structure. For example a result of D. B. A. Epstein says that a finitely generated subgroup of GL(n, ℝ) is generically a free group. We say that a group G has the generic free group property if any finitely generated subgroup is generically a free group. Further G has the strong generic free group property if given randomly chosen elements g 1, . . . , gn in G then generically they are a free basis for the free subgroup they generate. In this paper we show that for any arbitrary free product of finitely generated infinite groups satisfies the strong generic free group property. There are also extensions to more general amalgams - free products with amalgamation and HNN groups. These results have implications in cryptography. In particular several cryptosystems use random choices of subgroups as hard cryptographic problems. In groups with the generic free group property any such cryptosystem may be attackable by a length based attack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信