基于噪声调整稀疏保持的高光谱图像降维分类

N. Ly, Q. Du, J. Fowler
{"title":"基于噪声调整稀疏保持的高光谱图像降维分类","authors":"N. Ly, Q. Du, J. Fowler","doi":"10.1109/PPRS.2012.6398318","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the performance of a sparsity-preserving graph embedding based approach, called l1 graph, in hyperspectral image dimensionality reduction (DR), and propose noise-adjusted sparsity-preserving (NASP) based DR when training samples are unavailable. In conjunction with the state-of-the-art hyperspectral image classifier, support vector machine with composite kernels (SVM-CK), the experimental study show that NASP can significantly improve the classification accuracy, compared to other widely used DR methods.","PeriodicalId":139043,"journal":{"name":"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise-adjusted sparsity-preserving-based dimensionality reduction for hyperspectral image classification\",\"authors\":\"N. Ly, Q. Du, J. Fowler\",\"doi\":\"10.1109/PPRS.2012.6398318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the performance of a sparsity-preserving graph embedding based approach, called l1 graph, in hyperspectral image dimensionality reduction (DR), and propose noise-adjusted sparsity-preserving (NASP) based DR when training samples are unavailable. In conjunction with the state-of-the-art hyperspectral image classifier, support vector machine with composite kernels (SVM-CK), the experimental study show that NASP can significantly improve the classification accuracy, compared to other widely used DR methods.\",\"PeriodicalId\":139043,\"journal\":{\"name\":\"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PPRS.2012.6398318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPRS.2012.6398318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种基于稀疏保持图嵌入的l1图方法在高光谱图像降维(DR)中的性能,并在训练样本不可用的情况下提出了基于噪声调整的稀疏保持(NASP)方法。结合目前最先进的高光谱图像分类器,支持向量机复合核(SVM-CK),实验研究表明,与其他广泛使用的DR方法相比,NASP可以显著提高分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise-adjusted sparsity-preserving-based dimensionality reduction for hyperspectral image classification
In this paper, we investigate the performance of a sparsity-preserving graph embedding based approach, called l1 graph, in hyperspectral image dimensionality reduction (DR), and propose noise-adjusted sparsity-preserving (NASP) based DR when training samples are unavailable. In conjunction with the state-of-the-art hyperspectral image classifier, support vector machine with composite kernels (SVM-CK), the experimental study show that NASP can significantly improve the classification accuracy, compared to other widely used DR methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信