{"title":"风险价值估计的多变量重尾模型","authors":"Carlo Marinelli, Stefano d’Addona, S. Rachev","doi":"10.2139/ssrn.1609613","DOIUrl":null,"url":null,"abstract":"For purposes of Value-at-Risk estimation, we consider several multivariate families of heavy-tailed distributions, which can be seen as multidimensional versions of Paretian stable and Student's t distributions allowing different marginals to have different indices of tail thickness. After a discussion of relevant estimation and simulation issues, we conduct a backtesting study on a set of portfolios containing derivative instruments, using historical US stock price data.","PeriodicalId":364869,"journal":{"name":"ERN: Simulation Methods (Topic)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multivariate Heavy-Tailed Models for Value-at-Risk Estimation\",\"authors\":\"Carlo Marinelli, Stefano d’Addona, S. Rachev\",\"doi\":\"10.2139/ssrn.1609613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For purposes of Value-at-Risk estimation, we consider several multivariate families of heavy-tailed distributions, which can be seen as multidimensional versions of Paretian stable and Student's t distributions allowing different marginals to have different indices of tail thickness. After a discussion of relevant estimation and simulation issues, we conduct a backtesting study on a set of portfolios containing derivative instruments, using historical US stock price data.\",\"PeriodicalId\":364869,\"journal\":{\"name\":\"ERN: Simulation Methods (Topic)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Simulation Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1609613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Simulation Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1609613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multivariate Heavy-Tailed Models for Value-at-Risk Estimation
For purposes of Value-at-Risk estimation, we consider several multivariate families of heavy-tailed distributions, which can be seen as multidimensional versions of Paretian stable and Student's t distributions allowing different marginals to have different indices of tail thickness. After a discussion of relevant estimation and simulation issues, we conduct a backtesting study on a set of portfolios containing derivative instruments, using historical US stock price data.