风险价值估计的多变量重尾模型

Carlo Marinelli, Stefano d’Addona, S. Rachev
{"title":"风险价值估计的多变量重尾模型","authors":"Carlo Marinelli, Stefano d’Addona, S. Rachev","doi":"10.2139/ssrn.1609613","DOIUrl":null,"url":null,"abstract":"For purposes of Value-at-Risk estimation, we consider several multivariate families of heavy-tailed distributions, which can be seen as multidimensional versions of Paretian stable and Student's t distributions allowing different marginals to have different indices of tail thickness. After a discussion of relevant estimation and simulation issues, we conduct a backtesting study on a set of portfolios containing derivative instruments, using historical US stock price data.","PeriodicalId":364869,"journal":{"name":"ERN: Simulation Methods (Topic)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multivariate Heavy-Tailed Models for Value-at-Risk Estimation\",\"authors\":\"Carlo Marinelli, Stefano d’Addona, S. Rachev\",\"doi\":\"10.2139/ssrn.1609613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For purposes of Value-at-Risk estimation, we consider several multivariate families of heavy-tailed distributions, which can be seen as multidimensional versions of Paretian stable and Student's t distributions allowing different marginals to have different indices of tail thickness. After a discussion of relevant estimation and simulation issues, we conduct a backtesting study on a set of portfolios containing derivative instruments, using historical US stock price data.\",\"PeriodicalId\":364869,\"journal\":{\"name\":\"ERN: Simulation Methods (Topic)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Simulation Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1609613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Simulation Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1609613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为了估计风险值,我们考虑了几个多变量重尾分布族,它们可以被视为Paretian稳定分布和Student's t分布的多维版本,允许不同的边际具有不同的尾厚指数。在讨论了相关的估计和模拟问题之后,我们使用美国历史股票价格数据对一组包含衍生工具的投资组合进行了回测研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate Heavy-Tailed Models for Value-at-Risk Estimation
For purposes of Value-at-Risk estimation, we consider several multivariate families of heavy-tailed distributions, which can be seen as multidimensional versions of Paretian stable and Student's t distributions allowing different marginals to have different indices of tail thickness. After a discussion of relevant estimation and simulation issues, we conduct a backtesting study on a set of portfolios containing derivative instruments, using historical US stock price data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信