模块化架构的时间切片量子电路划分

Jonathan M. Baker, Casey Duckering, Alexander P. Hoover, F. Chong
{"title":"模块化架构的时间切片量子电路划分","authors":"Jonathan M. Baker, Casey Duckering, Alexander P. Hoover, F. Chong","doi":"10.1145/3387902.3392617","DOIUrl":null,"url":null,"abstract":"Current quantum computer designs will not scale. To scale beyond small prototypes, quantum architectures will likely adopt a modular approach with clusters of tightly connected quantum bits and sparser connections between clusters. We exploit this clustering and the statically-known control flow of quantum programs to create tractable partitioning heuristics which map quantum circuits to modular physical machines one time slice at a time. Specifically, we create optimized mappings for each time slice, accounting for the cost to move data from the previous time slice and using a tunable lookahead scheme to reduce the cost to move to future time slices. We compare our approach to a traditional statically-mapped, owner-computes model. Our results show strict improvement over the static mapping baseline. We reduce the non-local communication overhead by 89.8% in the best case and by 60.9% on average. Our techniques, unlike many exact solver methods, are computationally tractable.","PeriodicalId":155089,"journal":{"name":"Proceedings of the 17th ACM International Conference on Computing Frontiers","volume":"609 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Time-sliced quantum circuit partitioning for modular architectures\",\"authors\":\"Jonathan M. Baker, Casey Duckering, Alexander P. Hoover, F. Chong\",\"doi\":\"10.1145/3387902.3392617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current quantum computer designs will not scale. To scale beyond small prototypes, quantum architectures will likely adopt a modular approach with clusters of tightly connected quantum bits and sparser connections between clusters. We exploit this clustering and the statically-known control flow of quantum programs to create tractable partitioning heuristics which map quantum circuits to modular physical machines one time slice at a time. Specifically, we create optimized mappings for each time slice, accounting for the cost to move data from the previous time slice and using a tunable lookahead scheme to reduce the cost to move to future time slices. We compare our approach to a traditional statically-mapped, owner-computes model. Our results show strict improvement over the static mapping baseline. We reduce the non-local communication overhead by 89.8% in the best case and by 60.9% on average. Our techniques, unlike many exact solver methods, are computationally tractable.\",\"PeriodicalId\":155089,\"journal\":{\"name\":\"Proceedings of the 17th ACM International Conference on Computing Frontiers\",\"volume\":\"609 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3387902.3392617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387902.3392617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

目前的量子计算机设计无法扩展。为了超越小型原型,量子架构可能会采用模块化的方法,采用紧密连接的量子比特集群和集群之间更稀疏的连接。我们利用这种聚类和量子程序的静态已知控制流来创建易于处理的划分启发式算法,将量子电路映射到模块化物理机器,每次一个时间片。具体来说,我们为每个时间片创建了优化的映射,考虑了从前一个时间片移动数据的成本,并使用可调的前瞻方案来减少移动到未来时间片的成本。我们将我们的方法与传统的静态映射、所有者计算模型进行比较。我们的结果显示了相对于静态映射基线的严格改进。在最佳情况下,我们将非本地通信开销减少了89.8%,平均减少了60.9%。我们的技术,不像许多精确求解器方法,在计算上是可处理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-sliced quantum circuit partitioning for modular architectures
Current quantum computer designs will not scale. To scale beyond small prototypes, quantum architectures will likely adopt a modular approach with clusters of tightly connected quantum bits and sparser connections between clusters. We exploit this clustering and the statically-known control flow of quantum programs to create tractable partitioning heuristics which map quantum circuits to modular physical machines one time slice at a time. Specifically, we create optimized mappings for each time slice, accounting for the cost to move data from the previous time slice and using a tunable lookahead scheme to reduce the cost to move to future time slices. We compare our approach to a traditional statically-mapped, owner-computes model. Our results show strict improvement over the static mapping baseline. We reduce the non-local communication overhead by 89.8% in the best case and by 60.9% on average. Our techniques, unlike many exact solver methods, are computationally tractable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信