Top-K推荐系统的双向蒸馏

Wonbin Kweon, SeongKu Kang, Hwanjo Yu
{"title":"Top-K推荐系统的双向蒸馏","authors":"Wonbin Kweon, SeongKu Kang, Hwanjo Yu","doi":"10.1145/3442381.3449878","DOIUrl":null,"url":null,"abstract":"Recommender systems (RS) have started to employ knowledge distillation, which is a model compression technique training a compact model (student) with the knowledge transferred from a cumbersome model (teacher). The state-of-the-art methods rely on unidirectional distillation transferring the knowledge only from the teacher to the student, with an underlying assumption that the teacher is always superior to the student. However, we demonstrate that the student performs better than the teacher on a significant proportion of the test set, especially for RS. Based on this observation, we propose Bidirectional Distillation (BD) framework whereby both the teacher and the student collaboratively improve with each other. Specifically, each model is trained with the distillation loss that makes to follow the other’s prediction along with its original loss function. For effective bidirectional distillation, we propose rank discrepancy-aware sampling scheme to distill only the informative knowledge that can fully enhance each other. The proposed scheme is designed to effectively cope with a large performance gap between the teacher and the student. Trained in the bidirectional way, it turns out that both the teacher and the student are significantly improved compared to when being trained separately. Our extensive experiments on real-world datasets show that our proposed framework consistently outperforms the state-of-the-art competitors. We also provide analyses for an in-depth understanding of BD and ablation studies to verify the effectiveness of each proposed component.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Bidirectional Distillation for Top-K Recommender System\",\"authors\":\"Wonbin Kweon, SeongKu Kang, Hwanjo Yu\",\"doi\":\"10.1145/3442381.3449878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems (RS) have started to employ knowledge distillation, which is a model compression technique training a compact model (student) with the knowledge transferred from a cumbersome model (teacher). The state-of-the-art methods rely on unidirectional distillation transferring the knowledge only from the teacher to the student, with an underlying assumption that the teacher is always superior to the student. However, we demonstrate that the student performs better than the teacher on a significant proportion of the test set, especially for RS. Based on this observation, we propose Bidirectional Distillation (BD) framework whereby both the teacher and the student collaboratively improve with each other. Specifically, each model is trained with the distillation loss that makes to follow the other’s prediction along with its original loss function. For effective bidirectional distillation, we propose rank discrepancy-aware sampling scheme to distill only the informative knowledge that can fully enhance each other. The proposed scheme is designed to effectively cope with a large performance gap between the teacher and the student. Trained in the bidirectional way, it turns out that both the teacher and the student are significantly improved compared to when being trained separately. Our extensive experiments on real-world datasets show that our proposed framework consistently outperforms the state-of-the-art competitors. We also provide analyses for an in-depth understanding of BD and ablation studies to verify the effectiveness of each proposed component.\",\"PeriodicalId\":106672,\"journal\":{\"name\":\"Proceedings of the Web Conference 2021\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Web Conference 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442381.3449878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442381.3449878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

推荐系统(RS)已经开始采用知识蒸馏,这是一种模型压缩技术,用从笨重模型(教师)转移过来的知识训练一个紧凑模型(学生)。最先进的方法依赖于单向蒸馏,只将知识从教师转移到学生身上,并假设教师总是优于学生。然而,我们证明了学生在很大比例的测试集上比老师表现得更好,特别是对于RS。基于这一观察,我们提出了双向蒸馏(BD)框架,即教师和学生相互协作改进。具体来说,每个模型都是用蒸馏损失来训练的,这使得它跟随另一个模型的预测以及它的原始损失函数。为了实现有效的双向蒸馏,我们提出了等级差异感知的采样方案,只提取能充分增强彼此的信息知识。所提出的方案旨在有效地应对教师和学生之间的巨大表现差距。结果表明,在双向训练的情况下,教师和学生都比单独训练有了明显的提高。我们在真实世界数据集上的广泛实验表明,我们提出的框架始终优于最先进的竞争对手。我们还提供了深入了解BD和消融研究的分析,以验证每个提议组成部分的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bidirectional Distillation for Top-K Recommender System
Recommender systems (RS) have started to employ knowledge distillation, which is a model compression technique training a compact model (student) with the knowledge transferred from a cumbersome model (teacher). The state-of-the-art methods rely on unidirectional distillation transferring the knowledge only from the teacher to the student, with an underlying assumption that the teacher is always superior to the student. However, we demonstrate that the student performs better than the teacher on a significant proportion of the test set, especially for RS. Based on this observation, we propose Bidirectional Distillation (BD) framework whereby both the teacher and the student collaboratively improve with each other. Specifically, each model is trained with the distillation loss that makes to follow the other’s prediction along with its original loss function. For effective bidirectional distillation, we propose rank discrepancy-aware sampling scheme to distill only the informative knowledge that can fully enhance each other. The proposed scheme is designed to effectively cope with a large performance gap between the teacher and the student. Trained in the bidirectional way, it turns out that both the teacher and the student are significantly improved compared to when being trained separately. Our extensive experiments on real-world datasets show that our proposed framework consistently outperforms the state-of-the-art competitors. We also provide analyses for an in-depth understanding of BD and ablation studies to verify the effectiveness of each proposed component.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信