教育视频分类利用文本图像变换和监督学习

Houssem Chatbri, Marlon Oliveira, Kevin McGuinness, S. Little, K. Kameyama, P. Kwan, Alistair Sutherland, N. O’Connor
{"title":"教育视频分类利用文本图像变换和监督学习","authors":"Houssem Chatbri, Marlon Oliveira, Kevin McGuinness, S. Little, K. Kameyama, P. Kwan, Alistair Sutherland, N. O’Connor","doi":"10.1109/IPTA.2017.8853988","DOIUrl":null,"url":null,"abstract":"In this work, we present a method for automatic topic classification of educational videos using a speech transcript transform. Our method works as follows: First, speech recognition is used to generate video transcripts. Then, the transcripts are converted into images using a statistical cooccurrence transformation that we designed. Finally, a classifier is used to produce video category labels for a transcript image input. For our classifiers, we report results using a convolutional neural network (CNN) and a principal component analysis (PCA) model. In order to evaluate our method, we used the Khan Academy on a Stick dataset that contains 2,545 videos, where each video is labeled with one or two of 13 categories. Experiments show that our method is effective and strongly competitive against other supervised learning-based methods.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Educational video classification by using a transcript to image transform and supervised learning\",\"authors\":\"Houssem Chatbri, Marlon Oliveira, Kevin McGuinness, S. Little, K. Kameyama, P. Kwan, Alistair Sutherland, N. O’Connor\",\"doi\":\"10.1109/IPTA.2017.8853988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a method for automatic topic classification of educational videos using a speech transcript transform. Our method works as follows: First, speech recognition is used to generate video transcripts. Then, the transcripts are converted into images using a statistical cooccurrence transformation that we designed. Finally, a classifier is used to produce video category labels for a transcript image input. For our classifiers, we report results using a convolutional neural network (CNN) and a principal component analysis (PCA) model. In order to evaluate our method, we used the Khan Academy on a Stick dataset that contains 2,545 videos, where each video is labeled with one or two of 13 categories. Experiments show that our method is effective and strongly competitive against other supervised learning-based methods.\",\"PeriodicalId\":316356,\"journal\":{\"name\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2017.8853988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8853988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在这项工作中,我们提出了一种使用语音文本变换的教育视频自动主题分类方法。我们的方法是这样的:首先,使用语音识别生成视频文本。然后,使用我们设计的统计并发转换将转录本转换为图像。最后,使用分类器为文本图像输入生成视频类别标签。对于我们的分类器,我们使用卷积神经网络(CNN)和主成分分析(PCA)模型报告结果。为了评估我们的方法,我们在包含2545个视频的Stick数据集上使用了可汗学院,其中每个视频被标记为13个类别中的一个或两个。实验表明,我们的方法是有效的,与其他基于监督学习的方法相比具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Educational video classification by using a transcript to image transform and supervised learning
In this work, we present a method for automatic topic classification of educational videos using a speech transcript transform. Our method works as follows: First, speech recognition is used to generate video transcripts. Then, the transcripts are converted into images using a statistical cooccurrence transformation that we designed. Finally, a classifier is used to produce video category labels for a transcript image input. For our classifiers, we report results using a convolutional neural network (CNN) and a principal component analysis (PCA) model. In order to evaluate our method, we used the Khan Academy on a Stick dataset that contains 2,545 videos, where each video is labeled with one or two of 13 categories. Experiments show that our method is effective and strongly competitive against other supervised learning-based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信