Jun Zhang, D. Mueller, David Bryce, Tom A. Brockway, Fady H. Iskander
{"title":"弃井作业中多管柱隔离评价的实例研究","authors":"Jun Zhang, D. Mueller, David Bryce, Tom A. Brockway, Fady H. Iskander","doi":"10.30632/SPWLA-2021-0108","DOIUrl":null,"url":null,"abstract":"Cement sheath quality assessment is a critical initial step in plug and abandonment (P&A) operations during oil and gas well decommissioning. However, the technologies commonly used require unimpeded access to the casing annuli thus enforcing the need for production tubing pulling or inner casing milling. Cement integrity or isolation evaluation through multi-layered well casing strings will provide the opportunity to significantly reduce operational time and costs and to greatly simplify the traditional P&A process. As desired by the industry for years, recent advancements in isolation evaluation have proven the feasibility to assess cement sheath quality without the removal of production tubing or inner casing. The new development, consisting of a sophisticated logging apparatus with a novel processing methodology, led to a groundbreaking technology evaluating zonal isolation through multiple casing strings in wells. The logging tool is deployed in the borehole using E-line, Slickline, or Coiled Tubing; then the acoustic energy that is emitted and received by the tool travels through the tubing and surrounding annulus to reach the isolation barrier behind the casing. A proprietary frequency-domain processing algorithm successfully identifies the desired signal by discriminating it from overwhelming undesired signals such as tubing arrivals. The latest development stage further enables the segmentation of the measurements, providing an improved sensitivity to detect the azimuthal variations in the cement sheath quality. Case histories of applying omnidirectional and segmented multi-string isolation evaluation technology in field trials in the North Sea are presented in the paper. The measurement accuracy has been verified through side-by-side comparisons with industry-standard Cement Bond Log (CBL) and ultrasonic logs recorded after the tubing was removed. Additionally, the technology has been proven applicable to various casing or tubing weight & size combinations with tubing eccentric inside the casing. Thus, it is practicable in actual well configurations and suitable for the deviated well sections as well. In conclusion, this innovative technology that exhibits quantitative assessments of bonding or isolation conditions of wells in multi-string configurations provides a cost-effective solution during P&A and further demonstrates a great potential to accelerate along the path to a rigless P&A operation.","PeriodicalId":153712,"journal":{"name":"SPWLA 62nd Annual Online Symposium Transactions","volume":"590 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CASE STUDIES ON MULTI-STRING ISOLATION EVALUATION IN P&A OPERATIONS\",\"authors\":\"Jun Zhang, D. Mueller, David Bryce, Tom A. Brockway, Fady H. Iskander\",\"doi\":\"10.30632/SPWLA-2021-0108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cement sheath quality assessment is a critical initial step in plug and abandonment (P&A) operations during oil and gas well decommissioning. However, the technologies commonly used require unimpeded access to the casing annuli thus enforcing the need for production tubing pulling or inner casing milling. Cement integrity or isolation evaluation through multi-layered well casing strings will provide the opportunity to significantly reduce operational time and costs and to greatly simplify the traditional P&A process. As desired by the industry for years, recent advancements in isolation evaluation have proven the feasibility to assess cement sheath quality without the removal of production tubing or inner casing. The new development, consisting of a sophisticated logging apparatus with a novel processing methodology, led to a groundbreaking technology evaluating zonal isolation through multiple casing strings in wells. The logging tool is deployed in the borehole using E-line, Slickline, or Coiled Tubing; then the acoustic energy that is emitted and received by the tool travels through the tubing and surrounding annulus to reach the isolation barrier behind the casing. A proprietary frequency-domain processing algorithm successfully identifies the desired signal by discriminating it from overwhelming undesired signals such as tubing arrivals. The latest development stage further enables the segmentation of the measurements, providing an improved sensitivity to detect the azimuthal variations in the cement sheath quality. Case histories of applying omnidirectional and segmented multi-string isolation evaluation technology in field trials in the North Sea are presented in the paper. The measurement accuracy has been verified through side-by-side comparisons with industry-standard Cement Bond Log (CBL) and ultrasonic logs recorded after the tubing was removed. Additionally, the technology has been proven applicable to various casing or tubing weight & size combinations with tubing eccentric inside the casing. Thus, it is practicable in actual well configurations and suitable for the deviated well sections as well. In conclusion, this innovative technology that exhibits quantitative assessments of bonding or isolation conditions of wells in multi-string configurations provides a cost-effective solution during P&A and further demonstrates a great potential to accelerate along the path to a rigless P&A operation.\",\"PeriodicalId\":153712,\"journal\":{\"name\":\"SPWLA 62nd Annual Online Symposium Transactions\",\"volume\":\"590 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPWLA 62nd Annual Online Symposium Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30632/SPWLA-2021-0108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPWLA 62nd Annual Online Symposium Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30632/SPWLA-2021-0108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CASE STUDIES ON MULTI-STRING ISOLATION EVALUATION IN P&A OPERATIONS
Cement sheath quality assessment is a critical initial step in plug and abandonment (P&A) operations during oil and gas well decommissioning. However, the technologies commonly used require unimpeded access to the casing annuli thus enforcing the need for production tubing pulling or inner casing milling. Cement integrity or isolation evaluation through multi-layered well casing strings will provide the opportunity to significantly reduce operational time and costs and to greatly simplify the traditional P&A process. As desired by the industry for years, recent advancements in isolation evaluation have proven the feasibility to assess cement sheath quality without the removal of production tubing or inner casing. The new development, consisting of a sophisticated logging apparatus with a novel processing methodology, led to a groundbreaking technology evaluating zonal isolation through multiple casing strings in wells. The logging tool is deployed in the borehole using E-line, Slickline, or Coiled Tubing; then the acoustic energy that is emitted and received by the tool travels through the tubing and surrounding annulus to reach the isolation barrier behind the casing. A proprietary frequency-domain processing algorithm successfully identifies the desired signal by discriminating it from overwhelming undesired signals such as tubing arrivals. The latest development stage further enables the segmentation of the measurements, providing an improved sensitivity to detect the azimuthal variations in the cement sheath quality. Case histories of applying omnidirectional and segmented multi-string isolation evaluation technology in field trials in the North Sea are presented in the paper. The measurement accuracy has been verified through side-by-side comparisons with industry-standard Cement Bond Log (CBL) and ultrasonic logs recorded after the tubing was removed. Additionally, the technology has been proven applicable to various casing or tubing weight & size combinations with tubing eccentric inside the casing. Thus, it is practicable in actual well configurations and suitable for the deviated well sections as well. In conclusion, this innovative technology that exhibits quantitative assessments of bonding or isolation conditions of wells in multi-string configurations provides a cost-effective solution during P&A and further demonstrates a great potential to accelerate along the path to a rigless P&A operation.