利用前几年的个体和集体数据进行人工神经网络短期负荷预测

T. Matsumoto, S. Kitamura, Y. Ueki, T. Matsui
{"title":"利用前几年的个体和集体数据进行人工神经网络短期负荷预测","authors":"T. Matsumoto, S. Kitamura, Y. Ueki, T. Matsui","doi":"10.1109/ANN.1993.264283","DOIUrl":null,"url":null,"abstract":"This paper presents a short-term load forecasting technique for summer using an artificial neural network (ANN). The purpose of this study is to forecast accurately daily peak load for a target period using actual data from the same period of the previous several years as training data. This paper describes two methods. In one method, the actual data of each year for the several years earlier are used for each ANN. The other method uses the collective data of several years for the training of the ANN. With the proposed method, the mean absolute forecasting error was below 2%.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Short-term load forecasting by artificial neural networks using individual and collective data of preceding years\",\"authors\":\"T. Matsumoto, S. Kitamura, Y. Ueki, T. Matsui\",\"doi\":\"10.1109/ANN.1993.264283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a short-term load forecasting technique for summer using an artificial neural network (ANN). The purpose of this study is to forecast accurately daily peak load for a target period using actual data from the same period of the previous several years as training data. This paper describes two methods. In one method, the actual data of each year for the several years earlier are used for each ANN. The other method uses the collective data of several years for the training of the ANN. With the proposed method, the mean absolute forecasting error was below 2%.<<ETX>>\",\"PeriodicalId\":121897,\"journal\":{\"name\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANN.1993.264283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

提出了一种基于人工神经网络(ANN)的夏季短期负荷预测方法。本研究的目的是利用前几年同期的实际数据作为训练数据,准确预测目标时期的日峰值负荷。本文介绍了两种方法。在一种方法中,对每个人工神经网络使用前几年每年的实际数据。另一种方法是利用几年的集体数据对人工神经网络进行训练。采用该方法,平均绝对预测误差在2%以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-term load forecasting by artificial neural networks using individual and collective data of preceding years
This paper presents a short-term load forecasting technique for summer using an artificial neural network (ANN). The purpose of this study is to forecast accurately daily peak load for a target period using actual data from the same period of the previous several years as training data. This paper describes two methods. In one method, the actual data of each year for the several years earlier are used for each ANN. The other method uses the collective data of several years for the training of the ANN. With the proposed method, the mean absolute forecasting error was below 2%.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信