时空分析与建模方法综述

E. Delmelle, Changjoo Kim, N. Xiao, Wei Chen
{"title":"时空分析与建模方法综述","authors":"E. Delmelle, Changjoo Kim, N. Xiao, Wei Chen","doi":"10.4018/jagr.2013100101","DOIUrl":null,"url":null,"abstract":"With increasing availability of spatio-temporal data and the democratization of Geographical Information Systems (GIS), there has been a demand for novel statistical and visualization techniques which can explicitly integrate space and time. The paper discusses the nature of spatio-temporal data, the integration of time within GIS and the flourishing availability of spatial and temporal-explicit data over the Internet. The paper attempts to answer the fundamental question on how these large datasets can be analyzed in space and time to reveal critical patterns. The authors further elaborate on how spatial autocorrelation techniques are extended to deal with time, for point, linear, and areal features, and the impact of parameter selection, such as critical distance and time threshold to build adjacency matrices. The authors also discuss issues of space-time modeling for optimization problems.","PeriodicalId":368300,"journal":{"name":"Int. J. Appl. Geospat. Res.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Methods for Space-Time Analysis and Modeling: An Overview\",\"authors\":\"E. Delmelle, Changjoo Kim, N. Xiao, Wei Chen\",\"doi\":\"10.4018/jagr.2013100101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With increasing availability of spatio-temporal data and the democratization of Geographical Information Systems (GIS), there has been a demand for novel statistical and visualization techniques which can explicitly integrate space and time. The paper discusses the nature of spatio-temporal data, the integration of time within GIS and the flourishing availability of spatial and temporal-explicit data over the Internet. The paper attempts to answer the fundamental question on how these large datasets can be analyzed in space and time to reveal critical patterns. The authors further elaborate on how spatial autocorrelation techniques are extended to deal with time, for point, linear, and areal features, and the impact of parameter selection, such as critical distance and time threshold to build adjacency matrices. The authors also discuss issues of space-time modeling for optimization problems.\",\"PeriodicalId\":368300,\"journal\":{\"name\":\"Int. J. Appl. Geospat. Res.\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Appl. Geospat. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jagr.2013100101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Appl. Geospat. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jagr.2013100101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

随着时空数据的日益可用性和地理信息系统(GIS)的民主化,对能够明确地整合空间和时间的新型统计和可视化技术的需求不断增加。本文讨论了时空数据的本质、地理信息系统中的时间集成以及互联网上空间和时间明确数据的蓬勃发展。本文试图回答如何在空间和时间上分析这些大型数据集以揭示关键模式的基本问题。作者进一步阐述了如何将空间自相关技术扩展到处理时间、点、线性和面特征,以及参数选择的影响,如临界距离和时间阈值,以建立邻接矩阵。作者还讨论了优化问题的时空建模问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methods for Space-Time Analysis and Modeling: An Overview
With increasing availability of spatio-temporal data and the democratization of Geographical Information Systems (GIS), there has been a demand for novel statistical and visualization techniques which can explicitly integrate space and time. The paper discusses the nature of spatio-temporal data, the integration of time within GIS and the flourishing availability of spatial and temporal-explicit data over the Internet. The paper attempts to answer the fundamental question on how these large datasets can be analyzed in space and time to reveal critical patterns. The authors further elaborate on how spatial autocorrelation techniques are extended to deal with time, for point, linear, and areal features, and the impact of parameter selection, such as critical distance and time threshold to build adjacency matrices. The authors also discuss issues of space-time modeling for optimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信