风管高度和火源位置对吊顶双通风口围护结构火灾现象的影响

Y. Park, C. Lee
{"title":"风管高度和火源位置对吊顶双通风口围护结构火灾现象的影响","authors":"Y. Park, C. Lee","doi":"10.7731/kifse.1b44ea08","DOIUrl":null,"url":null,"abstract":"The effects of duct height (DH) and fire location (FL) in an enclosure on the mass flow rate and flow pattern of horizontal vent (HV) flow and temperature distribution in the enclosure were investigated through numerical simulations under the condition that two HVs were installed on the ceiling of the enclosure. To evaluate the effect of DH, DHs of HV1 were set to 0.19 m (HV1_DH0.19) and 0.05 m (HV1_DH0.05) under the condition that DH of HV2 was 0.05 m (HV2_DH0.05). The effect of FL was evaluated in three cases where the fire sources were located in the center of the floor (F LC), below HV1 (F L1), and below HV2 (F L2). With respect to the DH effect, the total mass flow rate of the vent flow was slightly higher and temperature was slightly lower in the case of HV1_DH0.19 than that in the case of HV1_DH0.05. However, considering the error bars, the effect of DH in this numerical simulation condition was considered to be insignificant. Furthermore, bidirectional flow patterns appeared in HV1 and HV2 in both DH conditions. Meanwhile, with respect to the FL effect, a bidirectional flow dominated by the mass flow rate of outflow occurred in the HV where the fire source was located, and a unidirectional inflow dominated by the mass flow rate of inflow occurred in the HV where the fire source was not located. The total mass flow rates of FL1 and FL2 conditions were similar, which were higher than those of FLC condition. The temperature was higher in FLC than those in FL1 and FL2. This was due to the small mass flow rate through the HV in the FLC. Meanwhile, an increasing trend of the temperature with the rising measurement height from the floor was observed at most of the temperature measurement points. However, when the fire source was located below HV1 and HV2, as the height from the floor increased, the temperature decreased and the overall temperature was low at the temperature measurement points below the vent where the fire source was not located. This trend was attributed to the occurrence of a strong unidirectional inflow wherein a large volume of low-temperature air flowed into the enclosure from the HV where the fire source was not located.","PeriodicalId":225639,"journal":{"name":"International Journal of Fire Science and Engineering","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of Duct Height and Fire Location on Fire Phenomena of Enclosure with Two Horizontal Vents Installed on Ceiling\",\"authors\":\"Y. Park, C. Lee\",\"doi\":\"10.7731/kifse.1b44ea08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of duct height (DH) and fire location (FL) in an enclosure on the mass flow rate and flow pattern of horizontal vent (HV) flow and temperature distribution in the enclosure were investigated through numerical simulations under the condition that two HVs were installed on the ceiling of the enclosure. To evaluate the effect of DH, DHs of HV1 were set to 0.19 m (HV1_DH0.19) and 0.05 m (HV1_DH0.05) under the condition that DH of HV2 was 0.05 m (HV2_DH0.05). The effect of FL was evaluated in three cases where the fire sources were located in the center of the floor (F LC), below HV1 (F L1), and below HV2 (F L2). With respect to the DH effect, the total mass flow rate of the vent flow was slightly higher and temperature was slightly lower in the case of HV1_DH0.19 than that in the case of HV1_DH0.05. However, considering the error bars, the effect of DH in this numerical simulation condition was considered to be insignificant. Furthermore, bidirectional flow patterns appeared in HV1 and HV2 in both DH conditions. Meanwhile, with respect to the FL effect, a bidirectional flow dominated by the mass flow rate of outflow occurred in the HV where the fire source was located, and a unidirectional inflow dominated by the mass flow rate of inflow occurred in the HV where the fire source was not located. The total mass flow rates of FL1 and FL2 conditions were similar, which were higher than those of FLC condition. The temperature was higher in FLC than those in FL1 and FL2. This was due to the small mass flow rate through the HV in the FLC. Meanwhile, an increasing trend of the temperature with the rising measurement height from the floor was observed at most of the temperature measurement points. However, when the fire source was located below HV1 and HV2, as the height from the floor increased, the temperature decreased and the overall temperature was low at the temperature measurement points below the vent where the fire source was not located. This trend was attributed to the occurrence of a strong unidirectional inflow wherein a large volume of low-temperature air flowed into the enclosure from the HV where the fire source was not located.\",\"PeriodicalId\":225639,\"journal\":{\"name\":\"International Journal of Fire Science and Engineering\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fire Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7731/kifse.1b44ea08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fire Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7731/kifse.1b44ea08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过数值模拟,研究了在机壳顶板上安装两个水平通风口的情况下,机壳内风道高度(DH)和火源位置(FL)对机壳内水平通风口质量流量、流态及温度分布的影响。为评价DH的效果,在HV2 DH为0.05 m (HV2_DH0.05)的情况下,HV1 DH分别为0.19 m (HV1_DH0.19)和0.05 m (HV1_DH0.05)。在火源位于楼层中心(F LC)、HV1 (F L1)以下和HV2 (F L2)以下三种情况下,对FL的影响进行了评估。在DH效应方面,与HV1_DH0.05相比,HV1_DH0.19的排气总质量流量略高,温度略低。但考虑误差条,认为在该数值模拟条件下DH的影响不显著。此外,在两种DH条件下,HV1和HV2都出现了双向流动模式。同时,在FL效应方面,火源所在的高压室内出现了以流出质量流量为主导的双向流动,而非火源所在的高压室内出现了以流入质量流量为主导的单向流入。FL1和FL2条件下的总质量流量基本一致,均高于FLC条件。FLC的温度高于FL1和FL2。这是由于FLC中通过HV的质量流量很小。同时,大部分测温点的温度随距离地面的测量高度的升高而升高。当火源位于HV1和HV2以下时,随着距离地面高度的增加,火源不位于通风口以下的测温点温度降低,整体温度较低。这一趋势是由于发生了强烈的单向流入,其中大量低温空气从火源不所在的高压电源流入外壳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Duct Height and Fire Location on Fire Phenomena of Enclosure with Two Horizontal Vents Installed on Ceiling
The effects of duct height (DH) and fire location (FL) in an enclosure on the mass flow rate and flow pattern of horizontal vent (HV) flow and temperature distribution in the enclosure were investigated through numerical simulations under the condition that two HVs were installed on the ceiling of the enclosure. To evaluate the effect of DH, DHs of HV1 were set to 0.19 m (HV1_DH0.19) and 0.05 m (HV1_DH0.05) under the condition that DH of HV2 was 0.05 m (HV2_DH0.05). The effect of FL was evaluated in three cases where the fire sources were located in the center of the floor (F LC), below HV1 (F L1), and below HV2 (F L2). With respect to the DH effect, the total mass flow rate of the vent flow was slightly higher and temperature was slightly lower in the case of HV1_DH0.19 than that in the case of HV1_DH0.05. However, considering the error bars, the effect of DH in this numerical simulation condition was considered to be insignificant. Furthermore, bidirectional flow patterns appeared in HV1 and HV2 in both DH conditions. Meanwhile, with respect to the FL effect, a bidirectional flow dominated by the mass flow rate of outflow occurred in the HV where the fire source was located, and a unidirectional inflow dominated by the mass flow rate of inflow occurred in the HV where the fire source was not located. The total mass flow rates of FL1 and FL2 conditions were similar, which were higher than those of FLC condition. The temperature was higher in FLC than those in FL1 and FL2. This was due to the small mass flow rate through the HV in the FLC. Meanwhile, an increasing trend of the temperature with the rising measurement height from the floor was observed at most of the temperature measurement points. However, when the fire source was located below HV1 and HV2, as the height from the floor increased, the temperature decreased and the overall temperature was low at the temperature measurement points below the vent where the fire source was not located. This trend was attributed to the occurrence of a strong unidirectional inflow wherein a large volume of low-temperature air flowed into the enclosure from the HV where the fire source was not located.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信