稀疏误差步态图像:一种新的步态识别方法

T. Verlekar, P. Correia, Luís Ducla Soares
{"title":"稀疏误差步态图像:一种新的步态识别方法","authors":"T. Verlekar, P. Correia, Luís Ducla Soares","doi":"10.1109/IWBF.2017.7935107","DOIUrl":null,"url":null,"abstract":"The performance of a gait recognition system is very much related to the usage of efficient feature representation and recognition modules. The first extracts features from an input image sequence to represent a user's distinctive gait pattern. The recognition module then compares the features of a probe user with those registered in the gallery database. This paper presents a novel gait feature representation, called Sparse Error Gait Image (SEGI), derived from the application of Robust Principal Component Analysis (RPCA) to Gait Energy Images (GEI). GEIs obtained from the same user at different instants always present some differences. Applying RPCA results in low-rank and sparse error components, the former capturing the commonalities and encompassing the small differences between input GEIs, while the larger differences are captured by the sparse error component. The proposed SEGI representation exploits the latter for recognition purposes. This paper also proposes two simple approaches for the recognition module, to exploit the SEGI, based on the computation of a Euclidean norm or the Euclidean distance. Using these simple recognition methods and the proposed SEGI representation gait recognition, results equivalent to the state-of-the-art are obtained.","PeriodicalId":111316,"journal":{"name":"2017 5th International Workshop on Biometrics and Forensics (IWBF)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sparse error gait image: A new representation for gait recognition\",\"authors\":\"T. Verlekar, P. Correia, Luís Ducla Soares\",\"doi\":\"10.1109/IWBF.2017.7935107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of a gait recognition system is very much related to the usage of efficient feature representation and recognition modules. The first extracts features from an input image sequence to represent a user's distinctive gait pattern. The recognition module then compares the features of a probe user with those registered in the gallery database. This paper presents a novel gait feature representation, called Sparse Error Gait Image (SEGI), derived from the application of Robust Principal Component Analysis (RPCA) to Gait Energy Images (GEI). GEIs obtained from the same user at different instants always present some differences. Applying RPCA results in low-rank and sparse error components, the former capturing the commonalities and encompassing the small differences between input GEIs, while the larger differences are captured by the sparse error component. The proposed SEGI representation exploits the latter for recognition purposes. This paper also proposes two simple approaches for the recognition module, to exploit the SEGI, based on the computation of a Euclidean norm or the Euclidean distance. Using these simple recognition methods and the proposed SEGI representation gait recognition, results equivalent to the state-of-the-art are obtained.\",\"PeriodicalId\":111316,\"journal\":{\"name\":\"2017 5th International Workshop on Biometrics and Forensics (IWBF)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 5th International Workshop on Biometrics and Forensics (IWBF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWBF.2017.7935107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Workshop on Biometrics and Forensics (IWBF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBF.2017.7935107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

步态识别系统的性能与有效的特征表示和识别模块的使用密切相关。第一种方法是从输入图像序列中提取特征,以表示用户独特的步态模式。然后,识别模块将探测用户的特征与数据库中注册的特征进行比较。将鲁棒主成分分析(RPCA)应用于步态能量图像(GEI),提出了一种新的步态特征表示方法——稀疏误差步态图像(SEGI)。同一用户在不同时刻获得的地理信息总是存在一定的差异。应用RPCA会得到低秩和稀疏的误差分量,前者捕获共性并包含输入gei之间的小差异,而稀疏误差分量捕获较大的差异。提出的SEGI表示利用后者来实现识别目的。本文还提出了基于欧几里得范数或欧几里得距离计算的两种简单的识别模块方法来利用SEGI。将这些简单的识别方法与所提出的SEGI表示步态识别相结合,得到了相当于最先进的步态识别结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse error gait image: A new representation for gait recognition
The performance of a gait recognition system is very much related to the usage of efficient feature representation and recognition modules. The first extracts features from an input image sequence to represent a user's distinctive gait pattern. The recognition module then compares the features of a probe user with those registered in the gallery database. This paper presents a novel gait feature representation, called Sparse Error Gait Image (SEGI), derived from the application of Robust Principal Component Analysis (RPCA) to Gait Energy Images (GEI). GEIs obtained from the same user at different instants always present some differences. Applying RPCA results in low-rank and sparse error components, the former capturing the commonalities and encompassing the small differences between input GEIs, while the larger differences are captured by the sparse error component. The proposed SEGI representation exploits the latter for recognition purposes. This paper also proposes two simple approaches for the recognition module, to exploit the SEGI, based on the computation of a Euclidean norm or the Euclidean distance. Using these simple recognition methods and the proposed SEGI representation gait recognition, results equivalent to the state-of-the-art are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信