二面体群的交图

N. Nurhabibah, A. G. Syarifudin, I. G. A. W. Wardhana, Q. Aini
{"title":"二面体群的交图","authors":"N. Nurhabibah, A. G. Syarifudin, I. G. A. W. Wardhana, Q. Aini","doi":"10.29303/emj.v4i2.119","DOIUrl":null,"url":null,"abstract":"The intersection graph of a finite group G is a graph (V,E) where V is a set of all non-trivial subgroups of G and E is a set of edges where two distinct subgroups H_i , H_j  are said to be adjacent if and only if H_i \\cap H_j \\neq {e} . This study discusses the intersection graph of a dihedral group D_{2n} specifically the subgraph, degree of vertices, radius, diameter, girth, and domination number. From this study, we obtained that if n=p^2 then the intersection graph of D_{2n} is containing complete subgraph K_{p+2} and \\gamma(\\Gamma_{D_{2n}})=p. ","PeriodicalId":281429,"journal":{"name":"EIGEN MATHEMATICS JOURNAL","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Intersection Graph of a Dihedral Group\",\"authors\":\"N. Nurhabibah, A. G. Syarifudin, I. G. A. W. Wardhana, Q. Aini\",\"doi\":\"10.29303/emj.v4i2.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The intersection graph of a finite group G is a graph (V,E) where V is a set of all non-trivial subgroups of G and E is a set of edges where two distinct subgroups H_i , H_j  are said to be adjacent if and only if H_i \\\\cap H_j \\\\neq {e} . This study discusses the intersection graph of a dihedral group D_{2n} specifically the subgraph, degree of vertices, radius, diameter, girth, and domination number. From this study, we obtained that if n=p^2 then the intersection graph of D_{2n} is containing complete subgraph K_{p+2} and \\\\gamma(\\\\Gamma_{D_{2n}})=p. \",\"PeriodicalId\":281429,\"journal\":{\"name\":\"EIGEN MATHEMATICS JOURNAL\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EIGEN MATHEMATICS JOURNAL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29303/emj.v4i2.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EIGEN MATHEMATICS JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29303/emj.v4i2.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

有限群G的相交图是一个图(V,E),其中V是G的所有非平凡子群的集合,E是两个不同子群H_i, H_j相邻的边的集合,当且仅当H_i \cap H_j \neq E{。本文讨论了二面体群}D_2n{的交点图,特别是子图、顶点度、半径、直径、周长和支配数。通过研究,我们得到了当n=p^2时,}D_2n{的相交图包含完全子图}K_p+2{和}\gamma (\Gamma _D_2n{)=p。{}}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Intersection Graph of a Dihedral Group
The intersection graph of a finite group G is a graph (V,E) where V is a set of all non-trivial subgroups of G and E is a set of edges where two distinct subgroups H_i , H_j  are said to be adjacent if and only if H_i \cap H_j \neq {e} . This study discusses the intersection graph of a dihedral group D_{2n} specifically the subgraph, degree of vertices, radius, diameter, girth, and domination number. From this study, we obtained that if n=p^2 then the intersection graph of D_{2n} is containing complete subgraph K_{p+2} and \gamma(\Gamma_{D_{2n}})=p. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信