面向领域的潜在策略谱系挖掘方法研究

Gang Liu, Wray L. Buntine, Xiaoxiao Yang, Weiping Fu
{"title":"面向领域的潜在策略谱系挖掘方法研究","authors":"Gang Liu, Wray L. Buntine, Xiaoxiao Yang, Weiping Fu","doi":"10.1109/ICICSE.2015.27","DOIUrl":null,"url":null,"abstract":"On the foundation of policy research and semantic analysis of documents, we put forward a mining method of effective latent policy lineage relationship. We apply the factor space theory to policy research and propose a concept-factor decomposition method. With the combine concepts, we put forward the generic extraction method to mine latent genes. Finally, we conduct an experimental verification on the policy text sets of two legal policies. The test comparison demonstrates the method's feasibility and effectiveness.","PeriodicalId":159836,"journal":{"name":"2015 Eighth International Conference on Internet Computing for Science and Engineering (ICICSE)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on Domain-Oriented Latent Policy Lineage Mining Method\",\"authors\":\"Gang Liu, Wray L. Buntine, Xiaoxiao Yang, Weiping Fu\",\"doi\":\"10.1109/ICICSE.2015.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the foundation of policy research and semantic analysis of documents, we put forward a mining method of effective latent policy lineage relationship. We apply the factor space theory to policy research and propose a concept-factor decomposition method. With the combine concepts, we put forward the generic extraction method to mine latent genes. Finally, we conduct an experimental verification on the policy text sets of two legal policies. The test comparison demonstrates the method's feasibility and effectiveness.\",\"PeriodicalId\":159836,\"journal\":{\"name\":\"2015 Eighth International Conference on Internet Computing for Science and Engineering (ICICSE)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Eighth International Conference on Internet Computing for Science and Engineering (ICICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICSE.2015.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Eighth International Conference on Internet Computing for Science and Engineering (ICICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICSE.2015.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在政策研究和文献语义分析的基础上,提出了一种有效的潜在政策谱系关系挖掘方法。将因子空间理论应用于政策研究,提出了概念-因子分解方法。结合组合概念,提出了挖掘潜在基因的通用提取方法。最后,我们对两项法律政策的政策文本集进行了实验验证。试验对比验证了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Domain-Oriented Latent Policy Lineage Mining Method
On the foundation of policy research and semantic analysis of documents, we put forward a mining method of effective latent policy lineage relationship. We apply the factor space theory to policy research and propose a concept-factor decomposition method. With the combine concepts, we put forward the generic extraction method to mine latent genes. Finally, we conduct an experimental verification on the policy text sets of two legal policies. The test comparison demonstrates the method's feasibility and effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信