基于GMM和KNN的微波断层分割技术在乳腺癌检测中的比较研究

Chunqiu Wang, Wei Wang, Sung Y. Shin, S. Jeon
{"title":"基于GMM和KNN的微波断层分割技术在乳腺癌检测中的比较研究","authors":"Chunqiu Wang, Wei Wang, Sung Y. Shin, S. Jeon","doi":"10.1145/2663761.2663769","DOIUrl":null,"url":null,"abstract":"Microwave Tomography Imaging (MTI) is a new technology for early breast cancer detection. Compared to other methods such as X-ray, Magnetic Resonance Imaging (MRI) and ultrasound, the MTI technology is almost radiation-free, and low cost. However, the analysis and method to utilize new MTI method still remains unclear. In this paper, we study two segmentation techniques, Gaussian Mixture Model (GMM) and k-Nearest Neighbor (KNN), using the Artificial Neural Network (ANN) tool based on the microwave tomography data, which differentiates normal tissues and suspicious tissues in the breast tissue. Comparing different statistical models in the MTI segmentation process on breast cancer detection, our extensive study contributes to the feature extraction and classification processes on breast cancer detection. The results show that in terms of specificity and Mathew Correlation Coefficient (MCC), the KNN model outperforms the GMM method in segmenting the Region of Interest (ROI) from raw MTI data.","PeriodicalId":120340,"journal":{"name":"Research in Adaptive and Convergent Systems","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Comparative study of microwave tomography segmentation techniques based on GMM and KNN in breast cancer detection\",\"authors\":\"Chunqiu Wang, Wei Wang, Sung Y. Shin, S. Jeon\",\"doi\":\"10.1145/2663761.2663769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microwave Tomography Imaging (MTI) is a new technology for early breast cancer detection. Compared to other methods such as X-ray, Magnetic Resonance Imaging (MRI) and ultrasound, the MTI technology is almost radiation-free, and low cost. However, the analysis and method to utilize new MTI method still remains unclear. In this paper, we study two segmentation techniques, Gaussian Mixture Model (GMM) and k-Nearest Neighbor (KNN), using the Artificial Neural Network (ANN) tool based on the microwave tomography data, which differentiates normal tissues and suspicious tissues in the breast tissue. Comparing different statistical models in the MTI segmentation process on breast cancer detection, our extensive study contributes to the feature extraction and classification processes on breast cancer detection. The results show that in terms of specificity and Mathew Correlation Coefficient (MCC), the KNN model outperforms the GMM method in segmenting the Region of Interest (ROI) from raw MTI data.\",\"PeriodicalId\":120340,\"journal\":{\"name\":\"Research in Adaptive and Convergent Systems\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Adaptive and Convergent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2663761.2663769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663761.2663769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

微波断层成像(MTI)是一种早期乳腺癌检测的新技术。与x射线、磁共振成像(MRI)和超声波等其他方法相比,MTI技术几乎没有辐射,而且成本低。然而,利用新的MTI方法的分析和方法尚不清楚。本文利用基于微波断层扫描数据的人工神经网络(ANN)工具,研究了高斯混合模型(GMM)和k-最近邻(KNN)两种分割技术,以区分乳腺组织中的正常组织和可疑组织。通过对乳腺癌检测MTI分割过程中不同统计模型的比较,我们的广泛研究有助于乳腺癌检测的特征提取和分类过程。结果表明,在特异性和马修相关系数(MCC)方面,KNN模型在从原始MTI数据中分割感兴趣区域(ROI)方面优于GMM方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative study of microwave tomography segmentation techniques based on GMM and KNN in breast cancer detection
Microwave Tomography Imaging (MTI) is a new technology for early breast cancer detection. Compared to other methods such as X-ray, Magnetic Resonance Imaging (MRI) and ultrasound, the MTI technology is almost radiation-free, and low cost. However, the analysis and method to utilize new MTI method still remains unclear. In this paper, we study two segmentation techniques, Gaussian Mixture Model (GMM) and k-Nearest Neighbor (KNN), using the Artificial Neural Network (ANN) tool based on the microwave tomography data, which differentiates normal tissues and suspicious tissues in the breast tissue. Comparing different statistical models in the MTI segmentation process on breast cancer detection, our extensive study contributes to the feature extraction and classification processes on breast cancer detection. The results show that in terms of specificity and Mathew Correlation Coefficient (MCC), the KNN model outperforms the GMM method in segmenting the Region of Interest (ROI) from raw MTI data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信