气候序列的模拟周期:分数正弦波形过程

Tommaso Proietti, Federico Maddanu
{"title":"气候序列的模拟周期:分数正弦波形过程","authors":"Tommaso Proietti, Federico Maddanu","doi":"10.2139/ssrn.3945978","DOIUrl":null,"url":null,"abstract":"The paper proposes a novel model for time series displaying persistent stationary cycles, the fractional sinusoidal waveform process. The underlying idea is to allow the parameters that regulate the amplitude and phase to evolve according to fractional noise processes. Its advantages with respect to popular alternative specifications, such as the Gegenbauer process, are twofold: the autocovariance function is available in closed form, which opens the way to exact maximum likelihood estimation; secondly the model encompasses deterministic cycles, so that discrete spectra arise as a limiting case. A generalization of the process, featuring multiple components, an additive `red noise' component and exogenous variables, provides a model for climate time series with mixed spectra. Our illustrations deal with the change in amplitude and phase of the intra-annual component of carbon dioxide concentrations in Mauna Loa, and with the estimation and the quantification of the contribution of orbital cycles to the variability of paleoclimate time series.","PeriodicalId":416571,"journal":{"name":"CEIS: Centre for Economic & International Studies Working Paper Series","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Modelling Cycles in Climate Series: The Fractional Sinusoidal Waveform Process\",\"authors\":\"Tommaso Proietti, Federico Maddanu\",\"doi\":\"10.2139/ssrn.3945978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a novel model for time series displaying persistent stationary cycles, the fractional sinusoidal waveform process. The underlying idea is to allow the parameters that regulate the amplitude and phase to evolve according to fractional noise processes. Its advantages with respect to popular alternative specifications, such as the Gegenbauer process, are twofold: the autocovariance function is available in closed form, which opens the way to exact maximum likelihood estimation; secondly the model encompasses deterministic cycles, so that discrete spectra arise as a limiting case. A generalization of the process, featuring multiple components, an additive `red noise' component and exogenous variables, provides a model for climate time series with mixed spectra. Our illustrations deal with the change in amplitude and phase of the intra-annual component of carbon dioxide concentrations in Mauna Loa, and with the estimation and the quantification of the contribution of orbital cycles to the variability of paleoclimate time series.\",\"PeriodicalId\":416571,\"journal\":{\"name\":\"CEIS: Centre for Economic & International Studies Working Paper Series\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEIS: Centre for Economic & International Studies Working Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3945978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEIS: Centre for Economic & International Studies Working Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3945978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种新的具有持久平稳周期的时间序列模型——分数正弦波形过程。其基本思想是允许调节振幅和相位的参数根据分数噪声过程演变。相对于流行的替代规范,如Gegenbauer过程,它的优点是双重的:自协方差函数以封闭形式可用,这为精确的最大似然估计开辟了道路;其次,该模型包含确定性循环,因此离散谱作为一种极限情况出现。对该过程的推广,包括多个分量、一个附加的“红噪声”分量和外生变量,提供了一个混合光谱的气候时间序列模型。我们的插图处理了莫纳罗亚地区二氧化碳浓度年际分量的振幅和相位变化,以及轨道周期对古气候时间序列变率的贡献的估计和量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling Cycles in Climate Series: The Fractional Sinusoidal Waveform Process
The paper proposes a novel model for time series displaying persistent stationary cycles, the fractional sinusoidal waveform process. The underlying idea is to allow the parameters that regulate the amplitude and phase to evolve according to fractional noise processes. Its advantages with respect to popular alternative specifications, such as the Gegenbauer process, are twofold: the autocovariance function is available in closed form, which opens the way to exact maximum likelihood estimation; secondly the model encompasses deterministic cycles, so that discrete spectra arise as a limiting case. A generalization of the process, featuring multiple components, an additive `red noise' component and exogenous variables, provides a model for climate time series with mixed spectra. Our illustrations deal with the change in amplitude and phase of the intra-annual component of carbon dioxide concentrations in Mauna Loa, and with the estimation and the quantification of the contribution of orbital cycles to the variability of paleoclimate time series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信