{"title":"基于非平衡绿函数的Verilog-A石墨烯纳米带模型","authors":"Y. Jiang, N. C. Laurenciu, S. Cotofana","doi":"10.1109/NANO.2018.8626396","DOIUrl":null,"url":null,"abstract":"Graphene, due to its wealth of remarkable electronic properties, emerged as a potent post-Si forerunner for nanoelectronics. To enable the exploration and evaluation of potential graphene-based circuit designs, we propose a fast and accurate Verilog-A physics-based model of a 5-terminal trapezoidal Quantum Point Contact (QPC) Graphene Nano-Ribbon (GNR) structure with parametrizable geometry. The proposed model computes the GNR conductance based on the Non-Equilibrium Green's Function (NEGF)-Landauer formalism, via a Simulink model called from within the Verilog-A model. Furthermore, model accuracy and versatility are demonstrated by means of Simulink assisted Cadence Spectre simulation of a simple test case GNR-based circuit and a GNR-based 2-input XOR gate.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Non-Equilibrium Green Function-based Verilog-A Graphene Nanoribbon Model\",\"authors\":\"Y. Jiang, N. C. Laurenciu, S. Cotofana\",\"doi\":\"10.1109/NANO.2018.8626396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene, due to its wealth of remarkable electronic properties, emerged as a potent post-Si forerunner for nanoelectronics. To enable the exploration and evaluation of potential graphene-based circuit designs, we propose a fast and accurate Verilog-A physics-based model of a 5-terminal trapezoidal Quantum Point Contact (QPC) Graphene Nano-Ribbon (GNR) structure with parametrizable geometry. The proposed model computes the GNR conductance based on the Non-Equilibrium Green's Function (NEGF)-Landauer formalism, via a Simulink model called from within the Verilog-A model. Furthermore, model accuracy and versatility are demonstrated by means of Simulink assisted Cadence Spectre simulation of a simple test case GNR-based circuit and a GNR-based 2-input XOR gate.\",\"PeriodicalId\":425521,\"journal\":{\"name\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2018.8626396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2018.8626396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-Equilibrium Green Function-based Verilog-A Graphene Nanoribbon Model
Graphene, due to its wealth of remarkable electronic properties, emerged as a potent post-Si forerunner for nanoelectronics. To enable the exploration and evaluation of potential graphene-based circuit designs, we propose a fast and accurate Verilog-A physics-based model of a 5-terminal trapezoidal Quantum Point Contact (QPC) Graphene Nano-Ribbon (GNR) structure with parametrizable geometry. The proposed model computes the GNR conductance based on the Non-Equilibrium Green's Function (NEGF)-Landauer formalism, via a Simulink model called from within the Verilog-A model. Furthermore, model accuracy and versatility are demonstrated by means of Simulink assisted Cadence Spectre simulation of a simple test case GNR-based circuit and a GNR-based 2-input XOR gate.