有限参数格式的估计

K. Lii, M. Rosenblatt
{"title":"有限参数格式的估计","authors":"K. Lii, M. Rosenblatt","doi":"10.1109/HOST.1993.264582","DOIUrl":null,"url":null,"abstract":"The object is to indicate the character of results for the approximate maximum likelihood estimation of parameters in nonminimum phase nonGaussian finite parameter schemes. The estimates are asymptotically normal under appropriate smoothness and positivity conditions on the probability density function of the generating independent random variables. The character of the asymptotic covariance matrix is indicated. In the truly nonminimum phase nonGaussian case one does not have consistency using the classical estimates using a Gaussian likelihood.<<ETX>>","PeriodicalId":439030,"journal":{"name":"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation for finite parameter schemes\",\"authors\":\"K. Lii, M. Rosenblatt\",\"doi\":\"10.1109/HOST.1993.264582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The object is to indicate the character of results for the approximate maximum likelihood estimation of parameters in nonminimum phase nonGaussian finite parameter schemes. The estimates are asymptotically normal under appropriate smoothness and positivity conditions on the probability density function of the generating independent random variables. The character of the asymptotic covariance matrix is indicated. In the truly nonminimum phase nonGaussian case one does not have consistency using the classical estimates using a Gaussian likelihood.<<ETX>>\",\"PeriodicalId\":439030,\"journal\":{\"name\":\"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1993.264582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1993.264582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目的是说明非最小相位非高斯有限参数格式参数的近似极大似然估计结果的性质。产生独立随机变量的概率密度函数在适当的平滑性和正性条件下,估计是渐近正态的。给出了渐近协方差矩阵的性质。在真正的非最小相位非高斯情况下,使用高斯似然的经典估计并不具有一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation for finite parameter schemes
The object is to indicate the character of results for the approximate maximum likelihood estimation of parameters in nonminimum phase nonGaussian finite parameter schemes. The estimates are asymptotically normal under appropriate smoothness and positivity conditions on the probability density function of the generating independent random variables. The character of the asymptotic covariance matrix is indicated. In the truly nonminimum phase nonGaussian case one does not have consistency using the classical estimates using a Gaussian likelihood.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信