利用混合函数实现检索正数据的可视化

M. Shoaib, Habib-ur-Rehman, A.A. Shah
{"title":"利用混合函数实现检索正数据的可视化","authors":"M. Shoaib, Habib-ur-Rehman, A.A. Shah","doi":"10.1109/ICICT.2005.1598597","DOIUrl":null,"url":null,"abstract":"Data visualization is an important technique used in data mining. We present the retrieved data into visual format to discover features and trends inherent to the data. Some features of the data to be retrieved are already known to us. Visualization should preserve these known features inherent to the data. Positivity is one such known feature that is inherent to most of the scientific and business data sets. For example, mass, volume and percentage concentration are meaningful only when they are positive values. However certain visualization techniques do not guarantee to preserve this feature while constructing visualization of retrieved data sets that are inherently positive. This research present a solution to the problem of positivity while visualizing the retrieved positive data sets.","PeriodicalId":276741,"journal":{"name":"2005 International Conference on Information and Communication Technologies","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualization of Retrieved Positive Data Using Blending Function\",\"authors\":\"M. Shoaib, Habib-ur-Rehman, A.A. Shah\",\"doi\":\"10.1109/ICICT.2005.1598597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data visualization is an important technique used in data mining. We present the retrieved data into visual format to discover features and trends inherent to the data. Some features of the data to be retrieved are already known to us. Visualization should preserve these known features inherent to the data. Positivity is one such known feature that is inherent to most of the scientific and business data sets. For example, mass, volume and percentage concentration are meaningful only when they are positive values. However certain visualization techniques do not guarantee to preserve this feature while constructing visualization of retrieved data sets that are inherently positive. This research present a solution to the problem of positivity while visualizing the retrieved positive data sets.\",\"PeriodicalId\":276741,\"journal\":{\"name\":\"2005 International Conference on Information and Communication Technologies\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 International Conference on Information and Communication Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT.2005.1598597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Conference on Information and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT.2005.1598597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据可视化是数据挖掘中的一项重要技术。我们将检索到的数据呈现为可视化格式,以发现数据固有的特征和趋势。我们已经知道要检索的数据的一些特征。可视化应该保留数据固有的这些已知特征。积极性就是这样一个已知的特征,它是大多数科学和商业数据集所固有的。例如,质量、体积和百分比浓度只有在为正值时才有意义。然而,某些可视化技术并不能保证在构建检索数据集的可视化时保留这一特性。本研究在对检索到的正数据集进行可视化时,提出了一种解决正性问题的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualization of Retrieved Positive Data Using Blending Function
Data visualization is an important technique used in data mining. We present the retrieved data into visual format to discover features and trends inherent to the data. Some features of the data to be retrieved are already known to us. Visualization should preserve these known features inherent to the data. Positivity is one such known feature that is inherent to most of the scientific and business data sets. For example, mass, volume and percentage concentration are meaningful only when they are positive values. However certain visualization techniques do not guarantee to preserve this feature while constructing visualization of retrieved data sets that are inherently positive. This research present a solution to the problem of positivity while visualizing the retrieved positive data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信