基于推文和标题的英语文本讽刺检测

Prajwal K Naik, Snigdha S Chenjeri, S. Sruthy, H. Mamatha
{"title":"基于推文和标题的英语文本讽刺检测","authors":"Prajwal K Naik, Snigdha S Chenjeri, S. Sruthy, H. Mamatha","doi":"10.1109/DISCOVER55800.2022.9974808","DOIUrl":null,"url":null,"abstract":"Online sarcasm is usually used to express something opposite to the literal meaning of the phrase or sentence and is hard to catch since it thrives in ambiguous situations. This paper revolves around natural language processing of samples in the English language to generalize the structure of a sarcastic sentence. Through this study, we develop a well-defined model for the automatic identification of sarcastic sentences in various usages. We intend for this study to find use in opinion mining, information categorization and sentiment analysis. Through the LSTM model along with a plethora of data used, this study achieved an accuracy of 93.02% without overfitting.","PeriodicalId":264177,"journal":{"name":"2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER)","volume":"691 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sarcasm Detection in English Text using Tweets and Headlines\",\"authors\":\"Prajwal K Naik, Snigdha S Chenjeri, S. Sruthy, H. Mamatha\",\"doi\":\"10.1109/DISCOVER55800.2022.9974808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online sarcasm is usually used to express something opposite to the literal meaning of the phrase or sentence and is hard to catch since it thrives in ambiguous situations. This paper revolves around natural language processing of samples in the English language to generalize the structure of a sarcastic sentence. Through this study, we develop a well-defined model for the automatic identification of sarcastic sentences in various usages. We intend for this study to find use in opinion mining, information categorization and sentiment analysis. Through the LSTM model along with a plethora of data used, this study achieved an accuracy of 93.02% without overfitting.\",\"PeriodicalId\":264177,\"journal\":{\"name\":\"2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER)\",\"volume\":\"691 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DISCOVER55800.2022.9974808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DISCOVER55800.2022.9974808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

网络讽刺通常用来表达与短语或句子的字面意思相反的东西,因为它在模棱两可的情况下很容易被抓住。本文通过对英语样本进行自然语言处理,归纳出讽刺句的结构。通过本研究,我们建立了一个定义良好的模型来自动识别不同用法的讽刺句子。我们打算将这项研究应用于意见挖掘、信息分类和情感分析。通过LSTM模型和大量数据的使用,本研究在没有过拟合的情况下达到了93.02%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sarcasm Detection in English Text using Tweets and Headlines
Online sarcasm is usually used to express something opposite to the literal meaning of the phrase or sentence and is hard to catch since it thrives in ambiguous situations. This paper revolves around natural language processing of samples in the English language to generalize the structure of a sarcastic sentence. Through this study, we develop a well-defined model for the automatic identification of sarcastic sentences in various usages. We intend for this study to find use in opinion mining, information categorization and sentiment analysis. Through the LSTM model along with a plethora of data used, this study achieved an accuracy of 93.02% without overfitting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信