Wenqi Jiang, Shigang Li, Yu Zhu, J. D. F. Licht, Zhenhao He, Runbin Shi, Cédric Renggli, Shuai Zhang, Theodoros Rekatsinas, T. Hoefler, G. Alonso
{"title":"协同设计的矢量搜索硬件和算法","authors":"Wenqi Jiang, Shigang Li, Yu Zhu, J. D. F. Licht, Zhenhao He, Runbin Shi, Cédric Renggli, Shuai Zhang, Theodoros Rekatsinas, T. Hoefler, G. Alonso","doi":"10.48550/arXiv.2306.11182","DOIUrl":null,"url":null,"abstract":"Vector search has emerged as the foundation for large-scale information retrieval and machine learning systems, with search engines like Google and Bing processing tens of thousands of queries per second on petabyte-scale document datasets by evaluating vector similarities between encoded query texts and web documents. As performance demands for vector search systems surge, accelerated hardware offers a promising solution in the post-Moore's Law era. We introduce FANNS, an end-to-end and scalable vector search framework on FPGAs. Given a user-provided recall requirement on a dataset and a hardware resource budget, FANNS automatically co-designs hardware and algorithm, subsequently generating the corresponding accelerator. The framework also supports scale-out by incorporating a hardware TCP/IP stack in the accelerator. FANNS attains up to 23.0× and 37.2× speedup compared to FPGA and CPU baselines, respectively, and demonstrates superior scalability to GPUs, achieving 5.5× and 7.6× speedup in median and 95th percentile (P95) latency within an eight-accelerator configuration. The remarkable performance of FANNS lays a robust groundwork for future FPGA integration in data centers and AI supercomputers.","PeriodicalId":124077,"journal":{"name":"Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Co-design Hardware and Algorithm for Vector Search\",\"authors\":\"Wenqi Jiang, Shigang Li, Yu Zhu, J. D. F. Licht, Zhenhao He, Runbin Shi, Cédric Renggli, Shuai Zhang, Theodoros Rekatsinas, T. Hoefler, G. Alonso\",\"doi\":\"10.48550/arXiv.2306.11182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vector search has emerged as the foundation for large-scale information retrieval and machine learning systems, with search engines like Google and Bing processing tens of thousands of queries per second on petabyte-scale document datasets by evaluating vector similarities between encoded query texts and web documents. As performance demands for vector search systems surge, accelerated hardware offers a promising solution in the post-Moore's Law era. We introduce FANNS, an end-to-end and scalable vector search framework on FPGAs. Given a user-provided recall requirement on a dataset and a hardware resource budget, FANNS automatically co-designs hardware and algorithm, subsequently generating the corresponding accelerator. The framework also supports scale-out by incorporating a hardware TCP/IP stack in the accelerator. FANNS attains up to 23.0× and 37.2× speedup compared to FPGA and CPU baselines, respectively, and demonstrates superior scalability to GPUs, achieving 5.5× and 7.6× speedup in median and 95th percentile (P95) latency within an eight-accelerator configuration. The remarkable performance of FANNS lays a robust groundwork for future FPGA integration in data centers and AI supercomputers.\",\"PeriodicalId\":124077,\"journal\":{\"name\":\"Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2306.11182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.11182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Co-design Hardware and Algorithm for Vector Search
Vector search has emerged as the foundation for large-scale information retrieval and machine learning systems, with search engines like Google and Bing processing tens of thousands of queries per second on petabyte-scale document datasets by evaluating vector similarities between encoded query texts and web documents. As performance demands for vector search systems surge, accelerated hardware offers a promising solution in the post-Moore's Law era. We introduce FANNS, an end-to-end and scalable vector search framework on FPGAs. Given a user-provided recall requirement on a dataset and a hardware resource budget, FANNS automatically co-designs hardware and algorithm, subsequently generating the corresponding accelerator. The framework also supports scale-out by incorporating a hardware TCP/IP stack in the accelerator. FANNS attains up to 23.0× and 37.2× speedup compared to FPGA and CPU baselines, respectively, and demonstrates superior scalability to GPUs, achieving 5.5× and 7.6× speedup in median and 95th percentile (P95) latency within an eight-accelerator configuration. The remarkable performance of FANNS lays a robust groundwork for future FPGA integration in data centers and AI supercomputers.