rG4detector

Maor Turner, Mira Barshai, Yaron Orenstein
{"title":"rG4detector","authors":"Maor Turner, Mira Barshai, Yaron Orenstein","doi":"10.1145/3535508.3545534","DOIUrl":null,"url":null,"abstract":"RNA G-quadruplexes (rG4s) are RNA secondary structures, which are formed by guanine-rich sequences and have important cellular functions. Thus, researchers would like to know where and when rG4s are formed throughout the transcriptome. Measuring rG4s experimentally is a long and lobarious process, and hence researchers often rely on computational methods to predict the rG4 propensity of a given RNA sequence. However, existing computational methods for rG4 propensity prediction are sub-optimal since they rely on specific sequence features and/or were trained on small datasets and without considering rG4 stability information. Here, we developed rG4detector, a convolutional neural network to predict the rG4 propensity of any given RNA sequence. We demonstrated that rG4detector outperforms existing methods over various transcriptomic datasets. In addition, we used rG4detector to detect potential rG4s in transcriptomic data, and showed that it improves detection performance compared to existing methods. Last, we interrogated rG4detector for the important features it learned and discovered known and novel molecular principles behind rG4 formation. We expect rG4detector to advance future rG4 research by accurate detection and propensity prediction of rG4s. The code, trained models, and processed datasets are publicly available via github.com/OrensteinLab/rG4detector.","PeriodicalId":354504,"journal":{"name":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"rG4detector\",\"authors\":\"Maor Turner, Mira Barshai, Yaron Orenstein\",\"doi\":\"10.1145/3535508.3545534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RNA G-quadruplexes (rG4s) are RNA secondary structures, which are formed by guanine-rich sequences and have important cellular functions. Thus, researchers would like to know where and when rG4s are formed throughout the transcriptome. Measuring rG4s experimentally is a long and lobarious process, and hence researchers often rely on computational methods to predict the rG4 propensity of a given RNA sequence. However, existing computational methods for rG4 propensity prediction are sub-optimal since they rely on specific sequence features and/or were trained on small datasets and without considering rG4 stability information. Here, we developed rG4detector, a convolutional neural network to predict the rG4 propensity of any given RNA sequence. We demonstrated that rG4detector outperforms existing methods over various transcriptomic datasets. In addition, we used rG4detector to detect potential rG4s in transcriptomic data, and showed that it improves detection performance compared to existing methods. Last, we interrogated rG4detector for the important features it learned and discovered known and novel molecular principles behind rG4 formation. We expect rG4detector to advance future rG4 research by accurate detection and propensity prediction of rG4s. The code, trained models, and processed datasets are publicly available via github.com/OrensteinLab/rG4detector.\",\"PeriodicalId\":354504,\"journal\":{\"name\":\"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3535508.3545534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3535508.3545534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
rG4detector
RNA G-quadruplexes (rG4s) are RNA secondary structures, which are formed by guanine-rich sequences and have important cellular functions. Thus, researchers would like to know where and when rG4s are formed throughout the transcriptome. Measuring rG4s experimentally is a long and lobarious process, and hence researchers often rely on computational methods to predict the rG4 propensity of a given RNA sequence. However, existing computational methods for rG4 propensity prediction are sub-optimal since they rely on specific sequence features and/or were trained on small datasets and without considering rG4 stability information. Here, we developed rG4detector, a convolutional neural network to predict the rG4 propensity of any given RNA sequence. We demonstrated that rG4detector outperforms existing methods over various transcriptomic datasets. In addition, we used rG4detector to detect potential rG4s in transcriptomic data, and showed that it improves detection performance compared to existing methods. Last, we interrogated rG4detector for the important features it learned and discovered known and novel molecular principles behind rG4 formation. We expect rG4detector to advance future rG4 research by accurate detection and propensity prediction of rG4s. The code, trained models, and processed datasets are publicly available via github.com/OrensteinLab/rG4detector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信