医疗保健领域越南语图像标注的多尺度方法

Bao G. Do, Doanh C. Bui, Nguyen D. Vo, Khang Nguyen
{"title":"医疗保健领域越南语图像标注的多尺度方法","authors":"Bao G. Do, Doanh C. Bui, Nguyen D. Vo, Khang Nguyen","doi":"10.1109/NICS56915.2022.10013398","DOIUrl":null,"url":null,"abstract":"The image caption generator is a task that aims to automatically generate a natural language with syntactically and semantically meaningful sentences to describe the visual content of a given image. This problem is attractive because it is a combination of two fields Computer Vision and Natural Language Processing. Despite some research on this problem, most of this research only focuses on generating English captions. In this paper, we present a Transformer-based model for this problem based on the VieCap4H dataset - the first grand dataset for the Healthcare domain in Vietnamese. In detail, we first propose the TG2F module to enhance visual representations and the BERT-based language model to obtain language presentation. Through experiments on the VieCap4H dataset, our approach achieves competitive results on the public test and private test without using any data augmentation method.","PeriodicalId":381028,"journal":{"name":"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-scale Approach for Vietnamese Image Captioning in Healthcare Domain\",\"authors\":\"Bao G. Do, Doanh C. Bui, Nguyen D. Vo, Khang Nguyen\",\"doi\":\"10.1109/NICS56915.2022.10013398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The image caption generator is a task that aims to automatically generate a natural language with syntactically and semantically meaningful sentences to describe the visual content of a given image. This problem is attractive because it is a combination of two fields Computer Vision and Natural Language Processing. Despite some research on this problem, most of this research only focuses on generating English captions. In this paper, we present a Transformer-based model for this problem based on the VieCap4H dataset - the first grand dataset for the Healthcare domain in Vietnamese. In detail, we first propose the TG2F module to enhance visual representations and the BERT-based language model to obtain language presentation. Through experiments on the VieCap4H dataset, our approach achieves competitive results on the public test and private test without using any data augmentation method.\",\"PeriodicalId\":381028,\"journal\":{\"name\":\"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS56915.2022.10013398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS56915.2022.10013398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像标题生成器是一项任务,旨在自动生成具有语法和语义上有意义的句子的自然语言,以描述给定图像的视觉内容。这个问题很有吸引力,因为它是计算机视觉和自然语言处理两个领域的结合。尽管有一些关于这个问题的研究,但大多数研究只关注于生成英文字幕。在本文中,我们基于VieCap4H数据集(越南医疗保健领域的第一个大数据集)提出了一个基于transformer的模型来解决这个问题。具体来说,我们首先提出了TG2F模块来增强视觉表示,并提出了基于bert的语言模型来获得语言表示。通过在VieCap4H数据集上的实验,我们的方法在不使用任何数据增强方法的情况下,在公开测试和私有测试上都取得了具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-scale Approach for Vietnamese Image Captioning in Healthcare Domain
The image caption generator is a task that aims to automatically generate a natural language with syntactically and semantically meaningful sentences to describe the visual content of a given image. This problem is attractive because it is a combination of two fields Computer Vision and Natural Language Processing. Despite some research on this problem, most of this research only focuses on generating English captions. In this paper, we present a Transformer-based model for this problem based on the VieCap4H dataset - the first grand dataset for the Healthcare domain in Vietnamese. In detail, we first propose the TG2F module to enhance visual representations and the BERT-based language model to obtain language presentation. Through experiments on the VieCap4H dataset, our approach achieves competitive results on the public test and private test without using any data augmentation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信