3.4在伽利略能力中心对伽利略和其他GNSS进行性能监控

K. Lutz, L. Greda, M. Smyrnaios, W. Dilg, T. Schilling, I. Ioanid, J. Furthner, S. Thölert, G. Allende Alba, M. Kriegel, L. Spataro, P. Rosauer, A. Meinecke, A. Brydon
{"title":"3.4在伽利略能力中心对伽利略和其他GNSS进行性能监控","authors":"K. Lutz, L. Greda, M. Smyrnaios, W. Dilg, T. Schilling, I. Ioanid, J. Furthner, S. Thölert, G. Allende Alba, M. Kriegel, L. Spataro, P. Rosauer, A. Meinecke, A. Brydon","doi":"10.5162/ettc2022/3.4","DOIUrl":null,"url":null,"abstract":": Satellite navigation has become a vital part of our daily lives by ensuring navigation on land, in air and at sea, and by providing precise timing information for the energy, communications and finance sector. It is therefore essential to monitor the performance of the four main global navigation satellite systems (GNSS) Galileo, GPS, GLONASS and BeiDou. The Galileo Competence Center (GK), part of the German Aerospace Center (DLR), is dedicated to the further development of the European GNSS consisting of Galileo and EGNOS. Within the SigPerMon project, the GK monitors the reliability and quality of navigation signals with comparable metrics for all four GNSS, and detects deviations from the nominal state of navigation systems. Necessary data are sourced from a global network of GNSS receiver stations. These data are used to compute performance indicators to monitor and analyse the availability and health status of navigation signals, and the precision of positioning and timing solutions. In the future, machine learning models will be used to detect anomalies in the satellite signals. A summary of the results will be presented on a dedicated webpage, which provides both detailed analyses for authorized researchers and personnel, and interactive data visualizations for the general public.","PeriodicalId":193365,"journal":{"name":"Proceedings - ettc2022","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3.4 Performance Monitoring for Galileo and other GNSS at the Galileo Competence Center\",\"authors\":\"K. Lutz, L. Greda, M. Smyrnaios, W. Dilg, T. Schilling, I. Ioanid, J. Furthner, S. Thölert, G. Allende Alba, M. Kriegel, L. Spataro, P. Rosauer, A. Meinecke, A. Brydon\",\"doi\":\"10.5162/ettc2022/3.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Satellite navigation has become a vital part of our daily lives by ensuring navigation on land, in air and at sea, and by providing precise timing information for the energy, communications and finance sector. It is therefore essential to monitor the performance of the four main global navigation satellite systems (GNSS) Galileo, GPS, GLONASS and BeiDou. The Galileo Competence Center (GK), part of the German Aerospace Center (DLR), is dedicated to the further development of the European GNSS consisting of Galileo and EGNOS. Within the SigPerMon project, the GK monitors the reliability and quality of navigation signals with comparable metrics for all four GNSS, and detects deviations from the nominal state of navigation systems. Necessary data are sourced from a global network of GNSS receiver stations. These data are used to compute performance indicators to monitor and analyse the availability and health status of navigation signals, and the precision of positioning and timing solutions. In the future, machine learning models will be used to detect anomalies in the satellite signals. A summary of the results will be presented on a dedicated webpage, which provides both detailed analyses for authorized researchers and personnel, and interactive data visualizations for the general public.\",\"PeriodicalId\":193365,\"journal\":{\"name\":\"Proceedings - ettc2022\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings - ettc2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5162/ettc2022/3.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings - ettc2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5162/ettc2022/3.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卫星导航已成为我们日常生活的重要组成部分,它确保了陆地、空中和海上的导航,并为能源、通信和金融部门提供精确的定时信息。因此,监测四个主要全球导航卫星系统(GNSS)的性能至关重要:伽利略、GPS、格洛纳斯和北斗。伽利略能力中心(GK)是德国航空航天中心(DLR)的一部分,致力于由伽利略和EGNOS组成的欧洲GNSS的进一步发展。在SigPerMon项目中,GK使用所有四个GNSS的可比指标监测导航信号的可靠性和质量,并检测导航系统标称状态的偏差。必要的数据来自全球GNSS接收站网络。这些数据用于计算性能指标,以监测和分析导航信号的可用性和健康状态,以及定位和授时解决方案的精度。未来,机器学习模型将被用于检测卫星信号中的异常情况。研究结果的摘要将在一个专门的网页上展示,该网页为授权的研究人员和人员提供详细的分析,并为公众提供交互式数据可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3.4 Performance Monitoring for Galileo and other GNSS at the Galileo Competence Center
: Satellite navigation has become a vital part of our daily lives by ensuring navigation on land, in air and at sea, and by providing precise timing information for the energy, communications and finance sector. It is therefore essential to monitor the performance of the four main global navigation satellite systems (GNSS) Galileo, GPS, GLONASS and BeiDou. The Galileo Competence Center (GK), part of the German Aerospace Center (DLR), is dedicated to the further development of the European GNSS consisting of Galileo and EGNOS. Within the SigPerMon project, the GK monitors the reliability and quality of navigation signals with comparable metrics for all four GNSS, and detects deviations from the nominal state of navigation systems. Necessary data are sourced from a global network of GNSS receiver stations. These data are used to compute performance indicators to monitor and analyse the availability and health status of navigation signals, and the precision of positioning and timing solutions. In the future, machine learning models will be used to detect anomalies in the satellite signals. A summary of the results will be presented on a dedicated webpage, which provides both detailed analyses for authorized researchers and personnel, and interactive data visualizations for the general public.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信