行人轨迹预测的位置-速度注意

Hao Xue, D. Huynh, Mark Reynolds
{"title":"行人轨迹预测的位置-速度注意","authors":"Hao Xue, D. Huynh, Mark Reynolds","doi":"10.1109/WACV.2019.00221","DOIUrl":null,"url":null,"abstract":"Pedestrian path forecasting is crucial in applications such as smart video surveillance. It is a challenging task because of the complex crowd movement patterns in the scenes. Most of existing state-of-the-art LSTM based prediction methods require rich context like labelled static obstacles, labelled entrance/exit regions and even the background scene. Furthermore, incorporating contextual information into trajectory prediction increases the computational overhead and decreases the generalization of the prediction models across different scenes. In this paper, we propose a joint Location-Velocity Attention LSTM based method to predict trajectories. Specifically, a module is designed to tweak the LSTM network and an attention mechanism is trained to learn to optimally combine the location and the velocity information of pedestrians in the prediction process. We have evaluated our approach against other baselines and state-of-the-art methods on several publicly available datasets. The results show that it not only outperforms other prediction methods but it also has a good generalization ability.","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Location-Velocity Attention for Pedestrian Trajectory Prediction\",\"authors\":\"Hao Xue, D. Huynh, Mark Reynolds\",\"doi\":\"10.1109/WACV.2019.00221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pedestrian path forecasting is crucial in applications such as smart video surveillance. It is a challenging task because of the complex crowd movement patterns in the scenes. Most of existing state-of-the-art LSTM based prediction methods require rich context like labelled static obstacles, labelled entrance/exit regions and even the background scene. Furthermore, incorporating contextual information into trajectory prediction increases the computational overhead and decreases the generalization of the prediction models across different scenes. In this paper, we propose a joint Location-Velocity Attention LSTM based method to predict trajectories. Specifically, a module is designed to tweak the LSTM network and an attention mechanism is trained to learn to optimally combine the location and the velocity information of pedestrians in the prediction process. We have evaluated our approach against other baselines and state-of-the-art methods on several publicly available datasets. The results show that it not only outperforms other prediction methods but it also has a good generalization ability.\",\"PeriodicalId\":436637,\"journal\":{\"name\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2019.00221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

行人路径预测在智能视频监控等应用中至关重要。由于场景中复杂的人群运动模式,这是一项具有挑战性的任务。现有最先进的基于LSTM的预测方法大多需要丰富的上下文,如标记的静态障碍物、标记的入口/出口区域甚至背景场景。此外,将上下文信息纳入轨迹预测增加了计算开销,降低了预测模型在不同场景下的泛化能力。本文提出了一种基于位置-速度关注LSTM的联合轨迹预测方法。具体来说,设计了一个模块来调整LSTM网络,并训练了一个注意机制来学习在预测过程中最优地结合行人的位置和速度信息。我们已经在几个公开可用的数据集上对其他基线和最先进的方法进行了评估。结果表明,该方法不仅优于其他预测方法,而且具有良好的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Location-Velocity Attention for Pedestrian Trajectory Prediction
Pedestrian path forecasting is crucial in applications such as smart video surveillance. It is a challenging task because of the complex crowd movement patterns in the scenes. Most of existing state-of-the-art LSTM based prediction methods require rich context like labelled static obstacles, labelled entrance/exit regions and even the background scene. Furthermore, incorporating contextual information into trajectory prediction increases the computational overhead and decreases the generalization of the prediction models across different scenes. In this paper, we propose a joint Location-Velocity Attention LSTM based method to predict trajectories. Specifically, a module is designed to tweak the LSTM network and an attention mechanism is trained to learn to optimally combine the location and the velocity information of pedestrians in the prediction process. We have evaluated our approach against other baselines and state-of-the-art methods on several publicly available datasets. The results show that it not only outperforms other prediction methods but it also has a good generalization ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信