基于深度掩模的无人机图像车辆检测

R. Yayla, Emir Albayrak, Uğur Yüzgeç
{"title":"基于深度掩模的无人机图像车辆检测","authors":"R. Yayla, Emir Albayrak, Uğur Yüzgeç","doi":"10.56415/csjm.v30.09","DOIUrl":null,"url":null,"abstract":"In this paper, a classification approach which is applied to Mask Region-based Convolutional Neural Network as deeper is proposed for vehicle detection on the images from UAV instead of the familiar methods. The different types of unmanned aerial vehicles are widely used for a lot of areas such as agricultural spraying, advertisement shooting, fire extinguishing, transportation and surveillance, exploration, destruction for the military. In recent years, deep learning techniques are progressively developed for object detection. Segmentation algorithms based on CNN architecture are especially widely used for extracting meaningful parts of an image. Additionally, Mask R-CNN based on CNN architecture rapidly detects the object with high-accuracy on an image. This study shows that the high-accuracy results are obtained when the Mask R-CNN is applied as deeper in vehicle detection on the images taken by UAV.","PeriodicalId":262087,"journal":{"name":"Comput. Sci. J. Moldova","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Vehicle Detection from Unmanned Aerial Images with Deep Mask R-CNN\",\"authors\":\"R. Yayla, Emir Albayrak, Uğur Yüzgeç\",\"doi\":\"10.56415/csjm.v30.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a classification approach which is applied to Mask Region-based Convolutional Neural Network as deeper is proposed for vehicle detection on the images from UAV instead of the familiar methods. The different types of unmanned aerial vehicles are widely used for a lot of areas such as agricultural spraying, advertisement shooting, fire extinguishing, transportation and surveillance, exploration, destruction for the military. In recent years, deep learning techniques are progressively developed for object detection. Segmentation algorithms based on CNN architecture are especially widely used for extracting meaningful parts of an image. Additionally, Mask R-CNN based on CNN architecture rapidly detects the object with high-accuracy on an image. This study shows that the high-accuracy results are obtained when the Mask R-CNN is applied as deeper in vehicle detection on the images taken by UAV.\",\"PeriodicalId\":262087,\"journal\":{\"name\":\"Comput. Sci. J. Moldova\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Sci. J. Moldova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56415/csjm.v30.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Sci. J. Moldova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56415/csjm.v30.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于基于掩模区域的卷积神经网络的分类方法,用于无人机图像上的车辆检测。不同类型的无人机被广泛应用于农业喷洒、广告拍摄、灭火、运输和监视、勘探、军事破坏等诸多领域。近年来,深度学习技术在目标检测领域得到了逐步发展。基于CNN架构的分割算法尤其广泛用于提取图像中有意义的部分。此外,基于CNN架构的Mask R-CNN可以快速、高精度地检测图像上的目标。研究表明,在无人机拍摄的图像上,将Mask R-CNN深度应用于车辆检测,获得了较高的精度结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle Detection from Unmanned Aerial Images with Deep Mask R-CNN
In this paper, a classification approach which is applied to Mask Region-based Convolutional Neural Network as deeper is proposed for vehicle detection on the images from UAV instead of the familiar methods. The different types of unmanned aerial vehicles are widely used for a lot of areas such as agricultural spraying, advertisement shooting, fire extinguishing, transportation and surveillance, exploration, destruction for the military. In recent years, deep learning techniques are progressively developed for object detection. Segmentation algorithms based on CNN architecture are especially widely used for extracting meaningful parts of an image. Additionally, Mask R-CNN based on CNN architecture rapidly detects the object with high-accuracy on an image. This study shows that the high-accuracy results are obtained when the Mask R-CNN is applied as deeper in vehicle detection on the images taken by UAV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信