人工神经网络在电磁参数化建模与优化中的研究进展

L. Ma, Jianan Zhang, Shuxia Yan, Qijun Zhang
{"title":"人工神经网络在电磁参数化建模与优化中的研究进展","authors":"L. Ma, Jianan Zhang, Shuxia Yan, Qijun Zhang","doi":"10.23919/eucap53622.2022.9769286","DOIUrl":null,"url":null,"abstract":"This paper reviews the recent advances in artificial neural networks (ANN) for electromagnetic (EM) parameterized modeling and optimization. As an advanced ANN-based EM parameterized modeling and optimization technique, the neurotransfer function (neuro-TF) is discussed further in this paper. The trained neuro-TF parameterized models can be further used for EM design optimization with repetitive geometrical variations.","PeriodicalId":228461,"journal":{"name":"2022 16th European Conference on Antennas and Propagation (EuCAP)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recent Advances in Artificial neural networks for EM parameterized modeling and optimization\",\"authors\":\"L. Ma, Jianan Zhang, Shuxia Yan, Qijun Zhang\",\"doi\":\"10.23919/eucap53622.2022.9769286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reviews the recent advances in artificial neural networks (ANN) for electromagnetic (EM) parameterized modeling and optimization. As an advanced ANN-based EM parameterized modeling and optimization technique, the neurotransfer function (neuro-TF) is discussed further in this paper. The trained neuro-TF parameterized models can be further used for EM design optimization with repetitive geometrical variations.\",\"PeriodicalId\":228461,\"journal\":{\"name\":\"2022 16th European Conference on Antennas and Propagation (EuCAP)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 16th European Conference on Antennas and Propagation (EuCAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eucap53622.2022.9769286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 16th European Conference on Antennas and Propagation (EuCAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eucap53622.2022.9769286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文综述了人工神经网络在电磁参数化建模与优化方面的研究进展。神经传递函数(neural - tf)作为一种先进的基于人工神经网络的电磁参数化建模和优化技术,本文对其进行了深入的研究。训练后的神经- tf参数化模型可进一步用于具有重复几何变化的电磁设计优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Advances in Artificial neural networks for EM parameterized modeling and optimization
This paper reviews the recent advances in artificial neural networks (ANN) for electromagnetic (EM) parameterized modeling and optimization. As an advanced ANN-based EM parameterized modeling and optimization technique, the neurotransfer function (neuro-TF) is discussed further in this paper. The trained neuro-TF parameterized models can be further used for EM design optimization with repetitive geometrical variations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信