神经元兴奋性:电压依赖性电流和突触传递。

Paul Rutecki
{"title":"神经元兴奋性:电压依赖性电流和突触传递。","authors":"Paul Rutecki","doi":"10.1097/00004691-199204010-00003","DOIUrl":null,"url":null,"abstract":"Neuronal membrane excitability and the synaptic connections among neurons produce behavior and cognition. The intracellular compartment of neurons is negatively charged relative to the extracellular space, and this charge, as well as current flow, is produced by ions. From the perspective of charged ions, the lipid bilayer of the neuronal membrane acts as a capacitor, and transmembrane glycoprotein pores or channels act as resistors. The open and closed states of ionic channels determine the membrane potential. At equilibrium, the lowest resistance or greatest permeability is for potassium, and the resting membrane potential is close to the equilibrium potential for potassium. When a channel is opened, permeable ions diffuse down their electrochemical gradients and the membrane potential is changed. Channels are gated (opened or closed) by voltage, neurotransmitters, and second messengers. The neuron integrates synaptic potentials produced by transmitter-gated channel activity and either generates a subthreshold potential, or a suprathreshold depolarization that generates an action potential or a burst of action potentials. Action potential generation is mediated by a large, brief sodium influx that is followed by activation of a voltage-dependent potassium eflux. The pattern of action potential firing is dependent on the interaction of a repertoire of voltage-dependent ion conductances. The action potential is the main signaling mechanism to activate synaptic transmission at axon terminals. Synaptic transmission is graded depending on the amount of calcium entering the presynaptic terminal. The number of action potentials, or the shape of the action potential, will determine the amount of calcium entering the terminal and the efficacy of synaptic transmission. Presynaptic ion channels may also be controlled by neurotransmitters or modulators and affect synaptic transmission by altering the amount of calcium influx.","PeriodicalId":117726,"journal":{"name":"Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Neuronal excitability: voltage-dependent currents and synaptic transmission.\",\"authors\":\"Paul Rutecki\",\"doi\":\"10.1097/00004691-199204010-00003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuronal membrane excitability and the synaptic connections among neurons produce behavior and cognition. The intracellular compartment of neurons is negatively charged relative to the extracellular space, and this charge, as well as current flow, is produced by ions. From the perspective of charged ions, the lipid bilayer of the neuronal membrane acts as a capacitor, and transmembrane glycoprotein pores or channels act as resistors. The open and closed states of ionic channels determine the membrane potential. At equilibrium, the lowest resistance or greatest permeability is for potassium, and the resting membrane potential is close to the equilibrium potential for potassium. When a channel is opened, permeable ions diffuse down their electrochemical gradients and the membrane potential is changed. Channels are gated (opened or closed) by voltage, neurotransmitters, and second messengers. The neuron integrates synaptic potentials produced by transmitter-gated channel activity and either generates a subthreshold potential, or a suprathreshold depolarization that generates an action potential or a burst of action potentials. Action potential generation is mediated by a large, brief sodium influx that is followed by activation of a voltage-dependent potassium eflux. The pattern of action potential firing is dependent on the interaction of a repertoire of voltage-dependent ion conductances. The action potential is the main signaling mechanism to activate synaptic transmission at axon terminals. Synaptic transmission is graded depending on the amount of calcium entering the presynaptic terminal. The number of action potentials, or the shape of the action potential, will determine the amount of calcium entering the terminal and the efficacy of synaptic transmission. Presynaptic ion channels may also be controlled by neurotransmitters or modulators and affect synaptic transmission by altering the amount of calcium influx.\",\"PeriodicalId\":117726,\"journal\":{\"name\":\"Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1097/00004691-199204010-00003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/00004691-199204010-00003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

神经元膜的兴奋性和神经元间的突触连接产生行为和认知。相对于细胞外空间,神经元的细胞内腔带负电荷,这种电荷以及电流都是由离子产生的。从带电离子的角度看,神经元膜的脂质双分子层充当电容器,跨膜糖蛋白孔或通道充当电阻器。离子通道的开闭状态决定了膜电位。在平衡状态下,钾离子的电阻最低或通透性最大,静息膜电位接近钾离子的平衡电位。当通道打开时,可渗透离子沿着其电化学梯度扩散,膜电位发生变化。通道被电压、神经递质和第二信使门控(打开或关闭)。神经元整合由传递门控通道活动产生的突触电位,并产生阈下电位,或产生动作电位或动作电位爆发的阈上去极化。动作电位的产生是由大量、短暂的钠内流介导的,随后是电压依赖性钾流的激活。动作电位放电的模式依赖于一系列依赖电压的离子电导的相互作用。动作电位是激活轴突末端突触传递的主要信号机制。突触传递的分级取决于进入突触前末端的钙量。动作电位的多少,或动作电位的形状,将决定进入末端的钙量和突触传递的功效。突触前离子通道也可由神经递质或调节剂控制,并通过改变钙内流量影响突触传递。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuronal excitability: voltage-dependent currents and synaptic transmission.
Neuronal membrane excitability and the synaptic connections among neurons produce behavior and cognition. The intracellular compartment of neurons is negatively charged relative to the extracellular space, and this charge, as well as current flow, is produced by ions. From the perspective of charged ions, the lipid bilayer of the neuronal membrane acts as a capacitor, and transmembrane glycoprotein pores or channels act as resistors. The open and closed states of ionic channels determine the membrane potential. At equilibrium, the lowest resistance or greatest permeability is for potassium, and the resting membrane potential is close to the equilibrium potential for potassium. When a channel is opened, permeable ions diffuse down their electrochemical gradients and the membrane potential is changed. Channels are gated (opened or closed) by voltage, neurotransmitters, and second messengers. The neuron integrates synaptic potentials produced by transmitter-gated channel activity and either generates a subthreshold potential, or a suprathreshold depolarization that generates an action potential or a burst of action potentials. Action potential generation is mediated by a large, brief sodium influx that is followed by activation of a voltage-dependent potassium eflux. The pattern of action potential firing is dependent on the interaction of a repertoire of voltage-dependent ion conductances. The action potential is the main signaling mechanism to activate synaptic transmission at axon terminals. Synaptic transmission is graded depending on the amount of calcium entering the presynaptic terminal. The number of action potentials, or the shape of the action potential, will determine the amount of calcium entering the terminal and the efficacy of synaptic transmission. Presynaptic ion channels may also be controlled by neurotransmitters or modulators and affect synaptic transmission by altering the amount of calcium influx.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信