人脸姿态问题的盲图像质量评价

Cerine Tafran, Mohamad El-Abed, Ziad Osman, Islam Elkabani
{"title":"人脸姿态问题的盲图像质量评价","authors":"Cerine Tafran, Mohamad El-Abed, Ziad Osman, Islam Elkabani","doi":"10.54729/2959-331x.1025","DOIUrl":null,"url":null,"abstract":"Abstract No-Reference image quality assessment for face images is of high interest since it can be required for biometric systems such as biometric passport applications to increase system performance. This can be achieved by controlling the quality of biometric sample images during enrollment. This paper proposes a novel no-reference image quality assessment method that extracts several image features and uses data mining techniques for detecting the pose variation problem in facial images. Using subsets from three public 2D face databases PUT, ENSIB, and AR, the experimental results recorded a promising accuracy of 97.06% when using the RandomForest Classifier, which outperforms other classifiers","PeriodicalId":124185,"journal":{"name":"BAU Journal - Science and Technology","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind Image Quality Assessment for Face Pose Problem\",\"authors\":\"Cerine Tafran, Mohamad El-Abed, Ziad Osman, Islam Elkabani\",\"doi\":\"10.54729/2959-331x.1025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract No-Reference image quality assessment for face images is of high interest since it can be required for biometric systems such as biometric passport applications to increase system performance. This can be achieved by controlling the quality of biometric sample images during enrollment. This paper proposes a novel no-reference image quality assessment method that extracts several image features and uses data mining techniques for detecting the pose variation problem in facial images. Using subsets from three public 2D face databases PUT, ENSIB, and AR, the experimental results recorded a promising accuracy of 97.06% when using the RandomForest Classifier, which outperforms other classifiers\",\"PeriodicalId\":124185,\"journal\":{\"name\":\"BAU Journal - Science and Technology\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BAU Journal - Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54729/2959-331x.1025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BAU Journal - Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54729/2959-331x.1025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:人脸图像的无参考图像质量评估是生物识别系统(如生物识别护照应用程序)提高系统性能所必需的,因此备受关注。这可以通过在登记过程中控制生物识别样本图像的质量来实现。本文提出了一种新的无参考图像质量评估方法,该方法提取图像的多个特征,并利用数据挖掘技术检测人脸图像中的位姿变化问题。使用来自PUT、ENSIB和AR三个公共二维人脸数据库的子集,实验结果表明,使用随机森林分类器时,准确率达到97.06%,优于其他分类器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind Image Quality Assessment for Face Pose Problem
Abstract No-Reference image quality assessment for face images is of high interest since it can be required for biometric systems such as biometric passport applications to increase system performance. This can be achieved by controlling the quality of biometric sample images during enrollment. This paper proposes a novel no-reference image quality assessment method that extracts several image features and uses data mining techniques for detecting the pose variation problem in facial images. Using subsets from three public 2D face databases PUT, ENSIB, and AR, the experimental results recorded a promising accuracy of 97.06% when using the RandomForest Classifier, which outperforms other classifiers
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信