随机van Kampen图和算法问题

A. Myasnikov, A. Ushakov
{"title":"随机van Kampen图和算法问题","authors":"A. Myasnikov, A. Ushakov","doi":"10.1515/gcc.2011.006","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we study the structure of random van Kampen diagrams over finitely presented groups. Such diagrams have many remarkable properties. In particular, we show that a random van Kampen diagram over a given group is hyperbolic, even though the group itself may not be hyperbolic. This allows one to design new fast algorithms for the Word Problem in groups. We introduce and study a new filling function, the depth of van Kampen diagrams, – a crucial algorithmic characteristic of null-homotopic words in the group.","PeriodicalId":119576,"journal":{"name":"Groups Complex. Cryptol.","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Random van Kampen diagrams and algorithmic problems in groups\",\"authors\":\"A. Myasnikov, A. Ushakov\",\"doi\":\"10.1515/gcc.2011.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we study the structure of random van Kampen diagrams over finitely presented groups. Such diagrams have many remarkable properties. In particular, we show that a random van Kampen diagram over a given group is hyperbolic, even though the group itself may not be hyperbolic. This allows one to design new fast algorithms for the Word Problem in groups. We introduce and study a new filling function, the depth of van Kampen diagrams, – a crucial algorithmic characteristic of null-homotopic words in the group.\",\"PeriodicalId\":119576,\"journal\":{\"name\":\"Groups Complex. Cryptol.\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complex. Cryptol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc.2011.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complex. Cryptol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc.2011.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

摘要本文研究了有限表示群上的随机van Kampen图的结构。这样的图有许多显著的性质。特别地,我们证明了给定群上的随机van Kampen图是双曲的,即使群本身可能不是双曲的。这样就可以为分组的Word问题设计新的快速算法。我们引入并研究了一种新的填充函数——van Kampen图的深度——这是群中零同伦词的关键算法特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random van Kampen diagrams and algorithmic problems in groups
Abstract In this paper we study the structure of random van Kampen diagrams over finitely presented groups. Such diagrams have many remarkable properties. In particular, we show that a random van Kampen diagram over a given group is hyperbolic, even though the group itself may not be hyperbolic. This allows one to design new fast algorithms for the Word Problem in groups. We introduce and study a new filling function, the depth of van Kampen diagrams, – a crucial algorithmic characteristic of null-homotopic words in the group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信