不同的顺序聚类算法和顺序回归模型

S. Miyamoto, Kenta Arai
{"title":"不同的顺序聚类算法和顺序回归模型","authors":"S. Miyamoto, Kenta Arai","doi":"10.1109/FUZZY.2009.5277183","DOIUrl":null,"url":null,"abstract":"Three approaches to extract clusters sequentially so that the specification of the number of clusters beforehand is unnecessary are introduced and four algorithms are developed. First is derived from possibilistic clustering while the second is a variation of the mountain clustering using medoids as cluster representatives. Moreover an algorithm based on the idea of noise clustering is developed. The last idea is applied to sequential extraction of regression models and we have the fourth algorithm. We compare these algorithms using numerical examples.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Different sequential clustering algorithms and sequential regression models\",\"authors\":\"S. Miyamoto, Kenta Arai\",\"doi\":\"10.1109/FUZZY.2009.5277183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three approaches to extract clusters sequentially so that the specification of the number of clusters beforehand is unnecessary are introduced and four algorithms are developed. First is derived from possibilistic clustering while the second is a variation of the mountain clustering using medoids as cluster representatives. Moreover an algorithm based on the idea of noise clustering is developed. The last idea is applied to sequential extraction of regression models and we have the fourth algorithm. We compare these algorithms using numerical examples.\",\"PeriodicalId\":117895,\"journal\":{\"name\":\"2009 IEEE International Conference on Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2009.5277183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

介绍了三种连续提取聚类的方法,从而不需要事先规定聚类的数量,并开发了四种算法。第一个是由可能性聚类衍生而来的,第二个是用中间点作为聚类代表的山聚类的变体。在此基础上,提出了一种基于噪声聚类思想的算法。最后一个思想应用于回归模型的顺序提取,我们有第四种算法。我们用数值例子来比较这些算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Different sequential clustering algorithms and sequential regression models
Three approaches to extract clusters sequentially so that the specification of the number of clusters beforehand is unnecessary are introduced and four algorithms are developed. First is derived from possibilistic clustering while the second is a variation of the mountain clustering using medoids as cluster representatives. Moreover an algorithm based on the idea of noise clustering is developed. The last idea is applied to sequential extraction of regression models and we have the fourth algorithm. We compare these algorithms using numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信