Deeraj Nagothu, Yu Chen, Alexander J. Aved, E. Blasch
{"title":"基于边缘网络频率估计的视频馈送认证","authors":"Deeraj Nagothu, Yu Chen, Alexander J. Aved, E. Blasch","doi":"10.4108/eai.4-2-2021.168648","DOIUrl":null,"url":null,"abstract":"Large scale Internet of Video Things (IoVT) supports situation awareness for smart cities; however, the rapid development in artificial intelligence (AI) technologies enables fake video/audio streams and doctored images to fool smart city security operators. Authenticating visual/audio feeds becomes essential for safety and security, from which an Electric Network Frequency (ENF) signal collected from the power grid is a prominent authentication mechanism. This paper proposes an ENF-based Video Authentication method using steady Superpixels (EVAS). Video superpixels group the pixels with uniform intensities and textures to eliminate the impacts from the fluctuations in the ENF estimation. An extensive experimental study validated the effectiveness of the EVAS system. Aiming at the environments with interconnected surveillance camera systems at the edge powered by an electricity grid, the proposed EVAS system achieved the design goal of detecting dissimilarities in the image sequences. Received on 14 December 2020; accepted on 26 January 2021; published on 04 February 2021","PeriodicalId":335727,"journal":{"name":"EAI Endorsed Trans. Security Safety","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Authenticating Video Feeds using Electric Network Frequency Estimation at the Edge\",\"authors\":\"Deeraj Nagothu, Yu Chen, Alexander J. Aved, E. Blasch\",\"doi\":\"10.4108/eai.4-2-2021.168648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large scale Internet of Video Things (IoVT) supports situation awareness for smart cities; however, the rapid development in artificial intelligence (AI) technologies enables fake video/audio streams and doctored images to fool smart city security operators. Authenticating visual/audio feeds becomes essential for safety and security, from which an Electric Network Frequency (ENF) signal collected from the power grid is a prominent authentication mechanism. This paper proposes an ENF-based Video Authentication method using steady Superpixels (EVAS). Video superpixels group the pixels with uniform intensities and textures to eliminate the impacts from the fluctuations in the ENF estimation. An extensive experimental study validated the effectiveness of the EVAS system. Aiming at the environments with interconnected surveillance camera systems at the edge powered by an electricity grid, the proposed EVAS system achieved the design goal of detecting dissimilarities in the image sequences. Received on 14 December 2020; accepted on 26 January 2021; published on 04 February 2021\",\"PeriodicalId\":335727,\"journal\":{\"name\":\"EAI Endorsed Trans. Security Safety\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Trans. Security Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eai.4-2-2021.168648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Security Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.4-2-2021.168648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Authenticating Video Feeds using Electric Network Frequency Estimation at the Edge
Large scale Internet of Video Things (IoVT) supports situation awareness for smart cities; however, the rapid development in artificial intelligence (AI) technologies enables fake video/audio streams and doctored images to fool smart city security operators. Authenticating visual/audio feeds becomes essential for safety and security, from which an Electric Network Frequency (ENF) signal collected from the power grid is a prominent authentication mechanism. This paper proposes an ENF-based Video Authentication method using steady Superpixels (EVAS). Video superpixels group the pixels with uniform intensities and textures to eliminate the impacts from the fluctuations in the ENF estimation. An extensive experimental study validated the effectiveness of the EVAS system. Aiming at the environments with interconnected surveillance camera systems at the edge powered by an electricity grid, the proposed EVAS system achieved the design goal of detecting dissimilarities in the image sequences. Received on 14 December 2020; accepted on 26 January 2021; published on 04 February 2021