{"title":"基于马尔可夫链和最近邻准则的线性时间搜索和可扩展性经验学习计划系统","authors":"Juan Carlos Segura-Ramirez, Willie Chang","doi":"10.1109/IRI.2006.252447","DOIUrl":null,"url":null,"abstract":"Most automated rule-based expert systems developed to aid student study planning and advising have appeared to be ephemeral due to the dynamic property in the ever-changing curricular requirements and rules. We propose a novel case-based study planning system with the search criteria based on the experience-indicated probability in Markov chains and the nearest-neighbor measurement for matches. We provide query results of course sequences to students who need to meet certain constraints such as to graduate within a certain number of academic terms, maintaining a minimal grade-point average, etc., all drawn from past graduate records. The time complexity of computing the nearest-neighbor indices to find the maximum similarity can be very large. Our implementation method achieves a linear-time complexity in both searching and scaling the system. When updating with a new record, each parametric combination represented by a sorted list of the records is linearly looked up, and the new record value is inserted to keep the list sorted. Since each query input is a set of constraints in a pre-determined order, the parametric combinations have an associated sorted list to look up in a one-pass linear process. The first-order Markov chains can also be updated with a linear time complexity whenever a new graduate record is introduced. The probability matrix is first looked up by row and then column, representing a pair of courses taken in two adjacent academic terms, and the look-up time is also linear","PeriodicalId":402255,"journal":{"name":"2006 IEEE International Conference on Information Reuse & Integration","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Markov Chain and Nearest Neighbor Criteria in an Experience Based Study Planning System with Linear Time Search and Scalability\",\"authors\":\"Juan Carlos Segura-Ramirez, Willie Chang\",\"doi\":\"10.1109/IRI.2006.252447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most automated rule-based expert systems developed to aid student study planning and advising have appeared to be ephemeral due to the dynamic property in the ever-changing curricular requirements and rules. We propose a novel case-based study planning system with the search criteria based on the experience-indicated probability in Markov chains and the nearest-neighbor measurement for matches. We provide query results of course sequences to students who need to meet certain constraints such as to graduate within a certain number of academic terms, maintaining a minimal grade-point average, etc., all drawn from past graduate records. The time complexity of computing the nearest-neighbor indices to find the maximum similarity can be very large. Our implementation method achieves a linear-time complexity in both searching and scaling the system. When updating with a new record, each parametric combination represented by a sorted list of the records is linearly looked up, and the new record value is inserted to keep the list sorted. Since each query input is a set of constraints in a pre-determined order, the parametric combinations have an associated sorted list to look up in a one-pass linear process. The first-order Markov chains can also be updated with a linear time complexity whenever a new graduate record is introduced. The probability matrix is first looked up by row and then column, representing a pair of courses taken in two adjacent academic terms, and the look-up time is also linear\",\"PeriodicalId\":402255,\"journal\":{\"name\":\"2006 IEEE International Conference on Information Reuse & Integration\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Information Reuse & Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2006.252447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Information Reuse & Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2006.252447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Markov Chain and Nearest Neighbor Criteria in an Experience Based Study Planning System with Linear Time Search and Scalability
Most automated rule-based expert systems developed to aid student study planning and advising have appeared to be ephemeral due to the dynamic property in the ever-changing curricular requirements and rules. We propose a novel case-based study planning system with the search criteria based on the experience-indicated probability in Markov chains and the nearest-neighbor measurement for matches. We provide query results of course sequences to students who need to meet certain constraints such as to graduate within a certain number of academic terms, maintaining a minimal grade-point average, etc., all drawn from past graduate records. The time complexity of computing the nearest-neighbor indices to find the maximum similarity can be very large. Our implementation method achieves a linear-time complexity in both searching and scaling the system. When updating with a new record, each parametric combination represented by a sorted list of the records is linearly looked up, and the new record value is inserted to keep the list sorted. Since each query input is a set of constraints in a pre-determined order, the parametric combinations have an associated sorted list to look up in a one-pass linear process. The first-order Markov chains can also be updated with a linear time complexity whenever a new graduate record is introduced. The probability matrix is first looked up by row and then column, representing a pair of courses taken in two adjacent academic terms, and the look-up time is also linear