谷歌的PageRank算法,用于在一般网络中对节点进行排名

J. Berkhout
{"title":"谷歌的PageRank算法,用于在一般网络中对节点进行排名","authors":"J. Berkhout","doi":"10.1109/WODES.2016.7497841","DOIUrl":null,"url":null,"abstract":"This paper extends the random surfer approach of Google's PageRank algorithm to general finite Markov chains that may consist of several ergodic classes and possible transient states. We will introduce the new concept of an extended ergodic projector of a Markov chain and we will show how the extended ergodic projector allows for intuitive better ranking of transient states. Numerical examples are provided to illustrate the effect of this new ranking approach.","PeriodicalId":268613,"journal":{"name":"2016 13th International Workshop on Discrete Event Systems (WODES)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Google's PageRank algorithm for ranking nodes in general networks\",\"authors\":\"J. Berkhout\",\"doi\":\"10.1109/WODES.2016.7497841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper extends the random surfer approach of Google's PageRank algorithm to general finite Markov chains that may consist of several ergodic classes and possible transient states. We will introduce the new concept of an extended ergodic projector of a Markov chain and we will show how the extended ergodic projector allows for intuitive better ranking of transient states. Numerical examples are provided to illustrate the effect of this new ranking approach.\",\"PeriodicalId\":268613,\"journal\":{\"name\":\"2016 13th International Workshop on Discrete Event Systems (WODES)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Workshop on Discrete Event Systems (WODES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WODES.2016.7497841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Workshop on Discrete Event Systems (WODES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WODES.2016.7497841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文将Google的PageRank算法中的随机冲浪方法推广到一般有限马尔可夫链,这种有限马尔可夫链可以由多个遍历类和可能的瞬态组成。我们将引入马尔可夫链的扩展遍历投影的新概念,我们将展示扩展遍历投影如何允许直观的更好的暂态排序。数值算例说明了这种新的排序方法的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Google's PageRank algorithm for ranking nodes in general networks
This paper extends the random surfer approach of Google's PageRank algorithm to general finite Markov chains that may consist of several ergodic classes and possible transient states. We will introduce the new concept of an extended ergodic projector of a Markov chain and we will show how the extended ergodic projector allows for intuitive better ranking of transient states. Numerical examples are provided to illustrate the effect of this new ranking approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信