基于线性矩阵不等式的强同时镇定问题

Abdul-Wahid A. Saif
{"title":"基于线性矩阵不等式的强同时镇定问题","authors":"Abdul-Wahid A. Saif","doi":"10.1109/SSD.2010.5585509","DOIUrl":null,"url":null,"abstract":"In this paper, the strong simultaneous stabilization problem for a collection of continoustime systems is considered. A sufficient condition for the existence of dynamic stable controller that stablize a single plant or simultaneously stabilizing a set of plants is obtained in terms of Linear Matrix Inequalities or Quadratic Matrix Inequalities. It is shown that these considered problems are solvable if a corresponding linear matrix inequality (s) are solvable. Furthermore, we derive a sufficient condition for the QMI problem to be solvable.","PeriodicalId":432382,"journal":{"name":"2010 7th International Multi- Conference on Systems, Signals and Devices","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Strong simultaneous stabilization problem using Linear Matrix Inequalities\",\"authors\":\"Abdul-Wahid A. Saif\",\"doi\":\"10.1109/SSD.2010.5585509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the strong simultaneous stabilization problem for a collection of continoustime systems is considered. A sufficient condition for the existence of dynamic stable controller that stablize a single plant or simultaneously stabilizing a set of plants is obtained in terms of Linear Matrix Inequalities or Quadratic Matrix Inequalities. It is shown that these considered problems are solvable if a corresponding linear matrix inequality (s) are solvable. Furthermore, we derive a sufficient condition for the QMI problem to be solvable.\",\"PeriodicalId\":432382,\"journal\":{\"name\":\"2010 7th International Multi- Conference on Systems, Signals and Devices\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 7th International Multi- Conference on Systems, Signals and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSD.2010.5585509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th International Multi- Conference on Systems, Signals and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD.2010.5585509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了一类连续时间系统的强同时镇定问题。利用线性矩阵不等式和二次矩阵不等式,给出了动态稳定控制器存在的充分条件,该控制器既能稳定单个被控对象,也能同时稳定一组被控对象。证明了当相应的线性矩阵不等式可解时,这些问题是可解的。进一步,我们得到了QMI问题可解的一个充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong simultaneous stabilization problem using Linear Matrix Inequalities
In this paper, the strong simultaneous stabilization problem for a collection of continoustime systems is considered. A sufficient condition for the existence of dynamic stable controller that stablize a single plant or simultaneously stabilizing a set of plants is obtained in terms of Linear Matrix Inequalities or Quadratic Matrix Inequalities. It is shown that these considered problems are solvable if a corresponding linear matrix inequality (s) are solvable. Furthermore, we derive a sufficient condition for the QMI problem to be solvable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信