后退按钮在随机漫步中的效果:应用程序的pagerank

F. Mathieu, Mohamed Bouklit
{"title":"后退按钮在随机漫步中的效果:应用程序的pagerank","authors":"F. Mathieu, Mohamed Bouklit","doi":"10.1145/1013367.1013480","DOIUrl":null,"url":null,"abstract":"Theoretical analysis of the Web graph is often used to improve the efficiency of search engines. The PageRank algorithm, proposed by Brin and Page, is used by the Google search engine to improve the results of the queries. The purpose of this article is to describe an enhanced version of the PageRank algorithm using a realistic model forthe back button. We introduce a limited history stack model (you cannot click more than m times in a row), and showthat when m=1, the computation of this Back PageRank can be as fast as that of a standard PageRank.","PeriodicalId":409891,"journal":{"name":"WWW Alt. '04","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"The effect of the back button in a random walk: application for pagerank\",\"authors\":\"F. Mathieu, Mohamed Bouklit\",\"doi\":\"10.1145/1013367.1013480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theoretical analysis of the Web graph is often used to improve the efficiency of search engines. The PageRank algorithm, proposed by Brin and Page, is used by the Google search engine to improve the results of the queries. The purpose of this article is to describe an enhanced version of the PageRank algorithm using a realistic model forthe back button. We introduce a limited history stack model (you cannot click more than m times in a row), and showthat when m=1, the computation of this Back PageRank can be as fast as that of a standard PageRank.\",\"PeriodicalId\":409891,\"journal\":{\"name\":\"WWW Alt. '04\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WWW Alt. '04\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1013367.1013480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WWW Alt. '04","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1013367.1013480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

网络图的理论分析经常被用来提高搜索引擎的效率。由布林和佩奇提出的PageRank算法被谷歌搜索引擎用来改进查询结果。本文的目的是描述一个增强版的PageRank算法,使用一个真实的后退按钮模型。我们引入了一个有限的历史堆栈模型(您不能在一行中单击超过m次),并表明当m=1时,该Back PageRank的计算速度可以与标准PageRank一样快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of the back button in a random walk: application for pagerank
Theoretical analysis of the Web graph is often used to improve the efficiency of search engines. The PageRank algorithm, proposed by Brin and Page, is used by the Google search engine to improve the results of the queries. The purpose of this article is to describe an enhanced version of the PageRank algorithm using a realistic model forthe back button. We introduce a limited history stack model (you cannot click more than m times in a row), and showthat when m=1, the computation of this Back PageRank can be as fast as that of a standard PageRank.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信