基于朝鲜语的多粒度集成学习研究

Jingxuan Jin, Yahui Zhao, Rong-yi Cui
{"title":"基于朝鲜语的多粒度集成学习研究","authors":"Jingxuan Jin, Yahui Zhao, Rong-yi Cui","doi":"10.1145/3448734.3450777","DOIUrl":null,"url":null,"abstract":"Ensemble learning can train and combine multiple classifiers where the predictions are used as new features to train a meta-classifier. This improves the accuracy of the model. This paper proposes a multi granularity model based on Stacking ensemble learning for Korean text classification. Firstly, eojeol and subeojeol granularity is proposed according to the Korean language composition. Since different feature granularity contains different semantic information, compare the six different granularities of the phoneme, syllable, subword, word, subeojeol, and eojeol in Korean text classification task. Secondly, construct suffix words based on Korean grammatical morphology and compare the different granularities effects after suffix preprocessing. Finally, propose a multi granularity ensemble learning model based on Korean called MGEL-K. To enrich the diversity of ensemble learning using different granularities, making differences between learners. The results show that MGEL-K model proposed in this paper works best in the Korean text classification task with an accuracy of 92.33%.","PeriodicalId":105999,"journal":{"name":"The 2nd International Conference on Computing and Data Science","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Research on Multi-granularity Ensemble Learning Based on Korean\",\"authors\":\"Jingxuan Jin, Yahui Zhao, Rong-yi Cui\",\"doi\":\"10.1145/3448734.3450777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensemble learning can train and combine multiple classifiers where the predictions are used as new features to train a meta-classifier. This improves the accuracy of the model. This paper proposes a multi granularity model based on Stacking ensemble learning for Korean text classification. Firstly, eojeol and subeojeol granularity is proposed according to the Korean language composition. Since different feature granularity contains different semantic information, compare the six different granularities of the phoneme, syllable, subword, word, subeojeol, and eojeol in Korean text classification task. Secondly, construct suffix words based on Korean grammatical morphology and compare the different granularities effects after suffix preprocessing. Finally, propose a multi granularity ensemble learning model based on Korean called MGEL-K. To enrich the diversity of ensemble learning using different granularities, making differences between learners. The results show that MGEL-K model proposed in this paper works best in the Korean text classification task with an accuracy of 92.33%.\",\"PeriodicalId\":105999,\"journal\":{\"name\":\"The 2nd International Conference on Computing and Data Science\",\"volume\":\"222 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2nd International Conference on Computing and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3448734.3450777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd International Conference on Computing and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448734.3450777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

集成学习可以训练和组合多个分类器,其中预测用作训练元分类器的新特征。这提高了模型的准确性。提出了一种基于堆叠集成学习的多粒度韩文文本分类模型。首先,根据朝鲜语的构成,提出了首词和子词的粒度。由于不同的特征粒度包含不同的语义信息,比较了韩语文本分类任务中音素、音节、子词、词、子词和词的六种不同粒度。其次,基于韩语语法形态构建后缀词,比较后缀预处理后的不同粒度效果。最后,提出了一种基于韩语的多粒度集成学习模型MGEL-K。利用不同的粒度来丰富集成学习的多样性,使学习者之间产生差异。结果表明,本文提出的MGEL-K模型在韩语文本分类任务中效果最好,准确率为92.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Multi-granularity Ensemble Learning Based on Korean
Ensemble learning can train and combine multiple classifiers where the predictions are used as new features to train a meta-classifier. This improves the accuracy of the model. This paper proposes a multi granularity model based on Stacking ensemble learning for Korean text classification. Firstly, eojeol and subeojeol granularity is proposed according to the Korean language composition. Since different feature granularity contains different semantic information, compare the six different granularities of the phoneme, syllable, subword, word, subeojeol, and eojeol in Korean text classification task. Secondly, construct suffix words based on Korean grammatical morphology and compare the different granularities effects after suffix preprocessing. Finally, propose a multi granularity ensemble learning model based on Korean called MGEL-K. To enrich the diversity of ensemble learning using different granularities, making differences between learners. The results show that MGEL-K model proposed in this paper works best in the Korean text classification task with an accuracy of 92.33%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信