主题:贝叶斯科学哲学

J. Sprenger, S. Hartmann
{"title":"主题:贝叶斯科学哲学","authors":"J. Sprenger, S. Hartmann","doi":"10.1093/oso/9780199672110.003.0014","DOIUrl":null,"url":null,"abstract":"This chapter sets the stage for what follows, introducing the reader to the philosophical principles and the mathematical formalism behind Bayesian inference and its scientific applications. We explain and motivate the representation of graded epistemic attitudes (“degrees of belief”) by means of specific mathematical structures: probabilities. Then we show how these attitudes are supposed to change upon learning new evidence (“Bayesian Conditionalization”), and how all this relates to theory evaluation, action and decision-making. After sketching the different varieties of Bayesian inference, we present Causal Bayesian Networks as an intuitive graphical tool for making Bayesian inference and we give an overview over the contents of the book.","PeriodicalId":140328,"journal":{"name":"Bayesian Philosophy of Science","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theme: Bayesian Philosophy of Science\",\"authors\":\"J. Sprenger, S. Hartmann\",\"doi\":\"10.1093/oso/9780199672110.003.0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter sets the stage for what follows, introducing the reader to the philosophical principles and the mathematical formalism behind Bayesian inference and its scientific applications. We explain and motivate the representation of graded epistemic attitudes (“degrees of belief”) by means of specific mathematical structures: probabilities. Then we show how these attitudes are supposed to change upon learning new evidence (“Bayesian Conditionalization”), and how all this relates to theory evaluation, action and decision-making. After sketching the different varieties of Bayesian inference, we present Causal Bayesian Networks as an intuitive graphical tool for making Bayesian inference and we give an overview over the contents of the book.\",\"PeriodicalId\":140328,\"journal\":{\"name\":\"Bayesian Philosophy of Science\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Philosophy of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780199672110.003.0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Philosophy of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780199672110.003.0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章为以下内容奠定了基础,向读者介绍贝叶斯推理及其科学应用背后的哲学原理和数学形式主义。我们通过特定的数学结构:概率来解释和激励分级认知态度(“相信程度”)的表示。然后,我们展示了这些态度在学习新证据(“贝叶斯条件化”)时应该如何改变,以及所有这些与理论评估、行动和决策之间的关系。在概述了贝叶斯推理的不同种类之后,我们将因果贝叶斯网络作为一种直观的图形工具来进行贝叶斯推理,并概述了本书的内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theme: Bayesian Philosophy of Science
This chapter sets the stage for what follows, introducing the reader to the philosophical principles and the mathematical formalism behind Bayesian inference and its scientific applications. We explain and motivate the representation of graded epistemic attitudes (“degrees of belief”) by means of specific mathematical structures: probabilities. Then we show how these attitudes are supposed to change upon learning new evidence (“Bayesian Conditionalization”), and how all this relates to theory evaluation, action and decision-making. After sketching the different varieties of Bayesian inference, we present Causal Bayesian Networks as an intuitive graphical tool for making Bayesian inference and we give an overview over the contents of the book.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信