可再生能源配电网的概率可用输电能力评估

Hao Sheng, Xiaozhe Wang
{"title":"可再生能源配电网的概率可用输电能力评估","authors":"Hao Sheng, Xiaozhe Wang","doi":"10.1109/EPEC.2017.8286215","DOIUrl":null,"url":null,"abstract":"Rapid increase of renewable energy sources and electric vehicles in utility distribution feeders introduces more and more uncertainties. To investigate how such uncertainties may affect the available delivery capability (ADC) of the distribution network, it is imperative to employ a probabilistic analysis framework. In this paper, a formulation for probabilistic ADC incorporating renewable generators and load variations is proposed; a computationally efficient method to solve the probabilistic ADC is presented, which combines the up-to-date sparse polynomial chaos expansion (PCE) and the continuation method. A numerical example in the IEEE 13 node test feeder is given to demonstrate the accuracy and efficiency of the proposed method.","PeriodicalId":141250,"journal":{"name":"2017 IEEE Electrical Power and Energy Conference (EPEC)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Probabilistic available delivery capability assessment of general distribution network with renewables\",\"authors\":\"Hao Sheng, Xiaozhe Wang\",\"doi\":\"10.1109/EPEC.2017.8286215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid increase of renewable energy sources and electric vehicles in utility distribution feeders introduces more and more uncertainties. To investigate how such uncertainties may affect the available delivery capability (ADC) of the distribution network, it is imperative to employ a probabilistic analysis framework. In this paper, a formulation for probabilistic ADC incorporating renewable generators and load variations is proposed; a computationally efficient method to solve the probabilistic ADC is presented, which combines the up-to-date sparse polynomial chaos expansion (PCE) and the continuation method. A numerical example in the IEEE 13 node test feeder is given to demonstrate the accuracy and efficiency of the proposed method.\",\"PeriodicalId\":141250,\"journal\":{\"name\":\"2017 IEEE Electrical Power and Energy Conference (EPEC)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Electrical Power and Energy Conference (EPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEC.2017.8286215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Electrical Power and Energy Conference (EPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEC.2017.8286215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

可再生能源和电动汽车在公用事业馈线中的快速增长带来了越来越多的不确定性。调查这些不确定性可能如何影响可用的交付能力(ADC)的分销网络,必须采用概率分析框架。本文提出了一种考虑可再生发电机组和负荷变化的概率ADC公式;将稀疏多项式混沌展开(PCE)与延拓方法相结合,提出了一种计算效率高的概率ADC求解方法。最后以IEEE 13节点试验馈线为例,验证了该方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic available delivery capability assessment of general distribution network with renewables
Rapid increase of renewable energy sources and electric vehicles in utility distribution feeders introduces more and more uncertainties. To investigate how such uncertainties may affect the available delivery capability (ADC) of the distribution network, it is imperative to employ a probabilistic analysis framework. In this paper, a formulation for probabilistic ADC incorporating renewable generators and load variations is proposed; a computationally efficient method to solve the probabilistic ADC is presented, which combines the up-to-date sparse polynomial chaos expansion (PCE) and the continuation method. A numerical example in the IEEE 13 node test feeder is given to demonstrate the accuracy and efficiency of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信