周期强迫激光器的新渐近理论

T. Erneux, I. Schwartz
{"title":"周期强迫激光器的新渐近理论","authors":"T. Erneux, I. Schwartz","doi":"10.21236/ADA232633","DOIUrl":null,"url":null,"abstract":"Sustained relaxation oscillations and irregular spiking have been observed in many periodically modulated lasers [2]. These observations have been substantiated numerically by recent studies of the laser rate equations [3,4]. In this paper, we propose a new asymptotic analysis of the laser equations which assumes that the laser oscillations correspond to relaxation oscillations. We identify a large parameter and construct these periodic solutions using singular perturbation techniques. We obtain the equations for the Poincare map and determine the first period doubling bifurcation.","PeriodicalId":441335,"journal":{"name":"Nonlinear Dynamics in Optical Systems","volume":"239 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New Asymptotic Theory for the Periodically Forced Laser\",\"authors\":\"T. Erneux, I. Schwartz\",\"doi\":\"10.21236/ADA232633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sustained relaxation oscillations and irregular spiking have been observed in many periodically modulated lasers [2]. These observations have been substantiated numerically by recent studies of the laser rate equations [3,4]. In this paper, we propose a new asymptotic analysis of the laser equations which assumes that the laser oscillations correspond to relaxation oscillations. We identify a large parameter and construct these periodic solutions using singular perturbation techniques. We obtain the equations for the Poincare map and determine the first period doubling bifurcation.\",\"PeriodicalId\":441335,\"journal\":{\"name\":\"Nonlinear Dynamics in Optical Systems\",\"volume\":\"239 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Dynamics in Optical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21236/ADA232633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Dynamics in Optical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21236/ADA232633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在许多周期性调制激光器中已经观察到持续的弛豫振荡和不规则的尖峰。最近对激光速率方程的研究在数值上证实了这些观察结果[3,4]。本文提出了一种新的激光方程的渐近分析方法,该方法假定激光振荡对应于弛豫振荡。我们确定了一个大参数,并利用奇异摄动技术构造了这些周期解。我们得到了庞加莱映射的方程,并确定了第一周期加倍分岔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Asymptotic Theory for the Periodically Forced Laser
Sustained relaxation oscillations and irregular spiking have been observed in many periodically modulated lasers [2]. These observations have been substantiated numerically by recent studies of the laser rate equations [3,4]. In this paper, we propose a new asymptotic analysis of the laser equations which assumes that the laser oscillations correspond to relaxation oscillations. We identify a large parameter and construct these periodic solutions using singular perturbation techniques. We obtain the equations for the Poincare map and determine the first period doubling bifurcation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信